교수자/개설자
-
학습기간
2025-12-04 ~ 2029-12-31
강좌소개
성명 이창선 소속기관 인하대학교 강의 명 (주제) 인과 지식 조립, 예측 모델 생성 AI 학습목표 인과 기반 예측은 철강, 반도체, 에너지, 화학, 제약 등과 같이 여러 인과 요인이 단계적으로 연결되어 결과를 만들어 내는 복잡한 제조 분야에서 필수적이다. 인과를 이해하는 인간과 데이터 패턴 학습 능력이 뛰어난 AI 가 협력하여야, 설명할 수 있고, 신뢰할 수 있는 예측 모델 개발이 가능하다. 인간과 AI의 협력을 위한 프로토콜 이해가 학습 목표이다. 분야 AI □ Bio □ Chem □ Drug 단계 기초
참여자수
2
인공지능 & 프로그래밍|
생물학 & 생물정보학|
화학 & 화학정보학|
교수자/개설자
-
학습기간
2025-12-09 ~ 2029-12-31
강좌소개
성명 신정호 소속기관 한국화학연구원 강의 명 (주제) 데이터-AI-로봇 기반의 SW/HW 복합 실험 플랫폼의 설계와 활용 학습목표 AI 기반 자율화 기술과 SDL(Self-Driving Lab)의 개념 및 국내·외 활용 사례를 이해하고 실험 데이터의 구조화·표준화 역량을 함양한다. 지식그래프 기반 데이터 모델링과 디지털트윈 구현 방법론을 학습하고, 모듈화·규격화 된 가상 실험장비 설계 능력을 배양한다. 로봇팔 및 PLC 제어, 쿠버네티스 기반 워크플로우 설계, ELK 파이프라인 구축을 통해 실 험 장비 자동화 및 데이터 오케스트레이션 실습 역량을 강화한다. 분야 ▣ AI □ Bio ▣ Chem □ Drug 단계 기초 및 심화
참여자수
3
인공지능 & 프로그래밍|
화학 & 화학정보학|
교수자/개설자
-
학습기간
2025-12-08 ~ 2029-12-31
강좌소개
성명 정성훈 소속기관 연세대학교 약학대학 강의 명 (주제) 의약바이오 제제개발을 위한 AI기반 품질 최적화 및 모델링 활용 학습목표 바이오의약품 및 의약품 개발과정에서 우수한 품질 확보를 위해 기존의 설계기반 품질고도화 (QbD) 전략에 의한 설계공간 도출 및 시뮬레이션을 통한 최적화 과정을 사례중심으로 소개하고 실험계획법의 이해도 제고와 최근 인공지능을 기반으로 AI기반 제제 및 품질 최적화등 산업적으로 적용가능한 제품개발에 대한 내용을 소개함. 분야 □ AI □ Bio □ Chem ■ Drug 단계 기초
참여자수
4
신약개발 & 제약산업|
교수자/개설자
-
학습기간
2025-12-08 ~ 2029-12-31
강좌소개
목차 (강의시간) 강의내용 실습 여부 교수자 1 제조품질 개념 X 본인 2 제조품질 개선을 위한 기존 접근법 X 본인 3 제조품질 개선을 위한 AI 기반 접근법 X 본인 선수과목 참고자료 ※ 도서, 웹사이트, 논문 등 준비사항 ※ 강의에 필요한 환경 등
참여자수
4
인공지능 & 프로그래밍|
교수자/개설자
-
학습기간
2025-12-08 ~ 2029-12-31
강좌소개
성명 신상 소속기관 에이블랩스 강의 명 (주제) SDL 실질적 적용을 위한 도움닫기 학습목표 바이오 산업에서의 SDL 구성 예시와 장비 API 기반의 활용 방안 분야 □ AI □ Bio ⍌ Chem □ Drug 단계 기초
참여자수
4
인공지능 & 프로그래밍|
생물학 & 생물정보학|
교수자/개설자
-
학습기간
2025-12-02 ~ 2029-12-31
강좌소개
성명 서 경 원 소속기관 서울대학교 약학교육연수원 강의 명 (주제) AI 등 첨단혁신기술 활용에 대한 규제동향 학습목표 최근 AI 등 첨단기술에 기반한 의료제품과 규제결정에 활용되는 첨단기술을 이해하고 규제동향을 학습한다 분야 ■ AI ■ Bio ■ Chem ■ Drug 단계 기초 / 심화
참여자수
5
인공지능 & 프로그래밍|
신약개발 & 제약산업|
교수자/개설자
-
학습기간
2025-12-04 ~ 2029-12-31
강좌소개
성명 이남일 소속기관 KAIST 강의 명 (주제) 바이오파운드리를 이용한 천연/비천연 신약 후보 물질 스크리닝 및 생산 학습목표 본 강의에서는 자동화와 인공지능을 기반으로 한 바이오파운드리의 개념과 핵심 구성요소를 이해하고, 이를 활용하여 천연 및 비천연 신약 후보 물질을 대규모로 스크리닝하고 생산하는 전략을 학습한다. 또한 실제 사례를 통해 신약 후보 발굴 및 생산 최적화 과정에서의 바이오파운드리 활용 방안을 종합적으로 탐구한다. 분야 ■ AI ■ Bio ■ Chem ■ Drug 단계 기초
참여자수
6
인공지능 & 프로그래밍|
생물학 & 생물정보학|
화학 & 화학정보학|
신약개발 & 제약산업|
교수자/개설자
-
학습기간
2025-12-08 ~ 2029-12-31
강좌소개
성명 김 현 욱 소속기관 한국과학기술원(KAIST) 강의 명 (주제) 바이오제조와 AI 학습목표 바이오제조의 개념과 대사공학·합성생물학의 발전을 이해하고, 생물 기반 화학물질 및 연료 생산 기술의 원리를 학습. 미생물 대사공학의 10가지 전략과 발효공정의 7가지 핵심 요인을 통해 생산 효율과 공정 최적화의 원리를 이해. AI와 데이터 마이닝 기술이 바이오파운드리 및 실험 자동화에 기여하는 역할을 파악. 분야 □ AI □ Bio □ Chem □ Drug 단계 기초
참여자수
6
인공지능 & 프로그래밍|
생물학 & 생물정보학|
교수자/개설자
-
학습기간
2025-11-27 ~ 2029-12-31
강좌소개
성명 정진현 소속기관 서울대학교 강의 명 (주제) AI 기반의 제조품질관리 변화와 대응 학습목표 분야 AI □ Bio □ Chem □ Drug 단계 기초
참여자수
9
인공지능 & 프로그래밍|
신약개발 & 제약산업|
교수자/개설자
-
학습기간
2025-12-08 ~ 2029-12-31
강좌소개
-
참여자수
12
인공지능 & 프로그래밍|
신약개발 & 제약산업|
교수자/개설자
-
학습기간
2025-11-14 ~ 2029-12-31
강좌소개
성명 김태형 소속기관 바이오넥서스 강의 명 (주제) 멀티에이전트 시스템 이해와 제약·바이오 산업 적용 학습목표 멀티에이전트 시스템의 개념, 구조, 그리고 의사결정·협업 메커니즘을 이해한다. 제약·바이오 산업의 신약개발 전주기에서 MAS가 수행할 수 있는 역할과 적용 사례를 분석한다. 실제 산업 환경에서 멀티에이전트 기반 워크플로를 설계·구성하여 생산성 및 연구 효율을 향상시키는 방법을 익힌다. 분야 V AI V Bio □ Chem □ Drug 단계 기초 / 심화
참여자수
17
인공지능 & 프로그래밍|
신약개발 & 제약산업|
교수자/개설자
-
학습기간
2025-08-27 ~ 2029-12-31
강좌소개
성명 김다원 소속기관 (주)옵토레인 강의 명 (주제) 후성유전체 분석 기반 액체 생검을 활용한 신약 타겟 발굴 학습목표 1. 후성유전체 분석 기술의 핵심 원리와 암 유전체 조절 기전을 이해한다. 2. 액체생검 기반 cfDNA 진단 기술의 원리와 장점을 이해하고, 신약 개발에의 응용 가능성을 설명할 수 있다. 분야 □ AI □ Bio □ Chem □ Drug 단계 기초
참여자수
19
생물학 & 생물정보학|
신약개발 & 제약산업|
교수자/개설자
-
학습기간
2024-03-01 ~ 2025-12-31
강좌소개
강의 소개 및 개요입니다. 성명 Dr. Yugal Sharma 소속기관 CAS 과목명 Overcoming Scientific Data Challenges in AI 강의시간 1 학습목표 1.Explore the critical role of a data foundation in supporting successful artificial intelligence (AI) initiatives.0 2. Share common challenges organizations face when establishing effective strategies for R&D data. 3. Showcase case studies based on real-life examples from CAS, a leader in scientific information solutions that guides the success of R&D digital initiatives of organizations worldwide.
참여자수
29
인공지능 & 프로그래밍|
교수자/개설자
-
학습기간
2025-08-28 ~ 2029-12-31
강좌소개
성명 정우진 소속기관 충남대학교 시니어헬스융합연구소 강의 명 (주제) Development of physiologically-based pharmacokinetic model 학습목표 생리학 기반 약동학 모델을 둘러싼 이론을 이해하고, 실무에 직접 적용한다. 분야 □ AI □ Bio □ Chem ■ Drug 단계 기초
참여자수
30
신약개발 & 제약산업|
임상개발 & 임상데이터|
교수자/개설자
-
학습기간
2025-09-12 ~ 2029-12-31
강좌소개
성명 김용호 소속기관 성균관대학교 강의 명 (주제) De Novo Design of Functional Proteins and Cryo-EM Application 학습목표 - 최종목표 : De Novo protein에 대한 기본적인 지식 습득과 Cryo-EM을 통한 구조분석 세부목표1) AI가 단백질 디자인에 가져다준 혁신과 디지인 기법에 대한 기본 지식 습득 세부목표2) 최근 선진화된 단백질 디자인 기법의 습득과 실습 세부목표3) CryoEM의 원리와 구동방식에 대해 학습 세부목표4) Case study 주제를 통한 단백질 디자인의 이해 분야 AI Bio □ Chem Drug 단계 기초
참여자수
34
인공지능 & 프로그래밍|
생물학 & 생물정보학|
신약개발 & 제약산업|
교수자/개설자
-
학습기간
2025-10-16 ~ 2029-12-31
강좌소개
성명 이상근 소속기관 고려대학교 정보보호대학원 강의 명 (주제) 인공지능은 안전한가? AI 보안의 이해 학습목표 인공지능 모델은 최근 연구로 알려진 다양한 위험에 노출되어 있다. 본 강의에서는 이러한 AI 보안 이슈에 대한 이해를 기반으로, 대표적인 공격 및 대응 방안을 소개하고자 한다. 이 강의 를 통해 신약개발에 있어 유용하면서 동시에 안전한 AI 모델에 대한 고민이 필요함을 환기하 고자 한다. 분야 AI □ Bio □ Chem □ Drug 단계 기초
참여자수
34
인공지능 & 프로그래밍|
교수자/개설자
-
학습기간
2025-10-24 ~ 2029-12-31
강좌소개
성명 박계명 소속기관 울산과학기술원 강의 명 (주제) 차세대 면역치료제 개발을 위한 인실리코 면역계 모델링 학습목표 최근 많은 다양한 질환들(암, 감염병, 자가면역(염증)질환)에서 면역계를 직접 표적으로 하는 면역치료법이 주요 치료방법으로 대두되고 있다. 그러나 각 질환에 관여하는 면역계의 복잡계적 특징으로 인하여 주요 분자 및 세포 타겟 발굴과 각 환자에 대한 면역치료 반응에 대한 예측에 어려움이 있다. 본 강의에서는 본 강의자의 연구 분야인 시스템 면역학적 관점에서 면역계의 행동에 대한 예측적 이해를 위한 인실리코 면역계 모델링 전반을 다루고 이 시도가 어떻게 차세대 면역치료제 개발을 가속화할 수 있을지 고찰하고자 한다. 분야 AI Bio □ Chem Drug 단계 심화
참여자수
34
인공지능 & 프로그래밍|
생물학 & 생물정보학|
신약개발 & 제약산업|
교수자/개설자
-
학습기간
2025-08-29 ~ 2029-12-31
강좌소개
성명 한범 소속기관 서울대학교 강의 명 (주제) 전장 유전체 데이터를 통한 원인 유전변이 탐색 학습목표 전장유전체데이터(GWAS)를 활용하여 원인 유전변이를 어떻게 탐색하는지 배웁니다. Imputation으로부터 Fine-mapping까지의 과정을 배우고, HLA 지역에서는 어떻게 탐색하는지를 배웁니다. 기존 자가면역질환의 예제를 살펴보고, Mendelian Randomization의 기초도 배웁니다. 분야 □ AI ▣ Bio □ Chem □ Drug 단계 기초
참여자수
35
생물학 & 생물정보학|
교수자/개설자
-
학습기간
2024-10-24 ~ 2029-12-31
강좌소개
성명 송길태 소속기관 부산대학교 강의 명 (주제) Recommendation systems in bioinformatics 학습목표 1. Recommendation systems에 대한 기본 개념을 이해한다. 2. Recommendation systems을 활용하여 표적 단백질 결합 후보 물질 추천 및 바이오마커 발굴 등의 문제를 해결하는 방법을 학습한다. 분야 AI 단계 심화
참여자수
40
신약개발 & 제약산업|
교수자/개설자
-
학습기간
2024-03-01 ~ 2025-12-31
강좌소개
강의 소개 및 개요입니다. 성명 정세희 소속기관 CAS 과목명 인공지능 및 빅데이터를 활용한 신규 화합물 발굴 강의시간 1시간 학습목표 Explore overall workflow of syntheses of novel compounds using CAS SciFinder Discovery Platform 강의 선수과목 및 준비사항입니다. 선수과목 참고자료 https://www.cas.org/solutions/cas-scifinder-discovery-platform 준비사항
참여자수
41
화학 & 화학정보학|
교수자/개설자
-
학습기간
2025-09-04 ~ 2029-12-31
강좌소개
성명 김권일 소속기관 경희대학교 생물학과 강의 명 (주제) 멀티오믹스 데이터를 활용한 암 면역원성 분석 실습 학습목표 멀티오믹스 데이터와 AI 기술을 기반으로 암 면역원성에 대한 최신 연구 동향을 이해하고, 신생항원 예측, digital cytometry, 면역세포 클러스터링 등의 분석 기법을 실습함으로써, 공개된 암 멀티오믹스 데이터를 활용해 종양의 면역원성 양상을 해석하는 역량을 기른다. 분야 ■ AI ■ Bio □ Chem □ Drug 단계 기초
참여자수
42
인공지능 & 프로그래밍|
생물학 & 생물정보학|
교수자/개설자
-
학습기간
2024-11-07 ~ 2029-12-31
강좌소개
성명 조혜영 소속기관 차의과학대학교 약학대학 강의 명 (주제) 분산형 임상시험 (Decentralized Clinical Trial, DCT) 학습목표 최근 분산형 임상시험(DCT)의 필요성과 현장 수요가 증가되면서 우리나라 정부에서도 글로벌 경쟁력을 강화하고 임상시험 참여 기회를 확대해 신약 접근성을 제고할 수 있도록 DCT 도입을 위한 기반 마련을 지원하고 있으므로 DCT의 개념과 장단점을 이해하고 DCT 수행을 위한 제도적 개선 방향에 대해 검토한다. 분야 □ AI ■ Bio □ Chem ■ Drug 단계 기초
참여자수
45
임상개발 & 임상데이터|
교수자/개설자
-
학습기간
2024-03-01 ~ 2025-12-31
강좌소개
강의시간 강의내용 실습여부 1 - Self-Supervised Learning이란? - Language 분야에서의 SSL - Computer vision 분야에서의 SSL X 2 - Molecular Graph란? - Graph Neural Networks - Molecular Graph 분야에서의 SSL X
참여자수
46
인공지능 & 프로그래밍|
교수자/개설자
-
학습기간
2025-09-12 ~ 2029-12-31
강좌소개
성명 홍 무 선 소속기관 서울대학교 강의 명 (주제) AI-Driven Analysis and Modeling of Biopharmaceutical Manufacturing Processes 학습목표 바이오의약품 제조공정의 주요 단계와 공정 데이터의 구조 및 활용 목적을 이해한다. AI 기반 분석 및 모델링 기법의 실제 공정 적용 사례를 학습한다. 분야 AI Bio □ Chem □ Drug 단계 심화
참여자수
46
인공지능 & 프로그래밍|
신약개발 & 제약산업|
교수자/개설자
-
학습기간
2025-10-31 ~ 2029-12-31
강좌소개
성명 이 남 용 소속기관 CellKey AI 강의 명 (주제) AI와 LLM을 활용한 바이오 분야의 혁신 학습목표 AI와 LLM 기술이 신약개발부터 바이오 생산공정, 임상시험 최적화에 이르기까지 바이오 산업 전반에 혁신적 변화를 가져오고 있다. 본 강의에서는 최신 AI 기술의 개념을 이해하고 실제 적용 사례를 통해 효율성 향상과 비용 절감 성과에 대한 이해를 돕는 것을 목표로 한다. 분야 ■ AI □ Bio □ Chem □ Drug 단계 기초
참여자수
50
인공지능 & 프로그래밍|
교수자/개설자
-
학습기간
2024-03-01 ~ 2025-12-31
강좌소개
강의 소개 및 개요입니다. 성명 허승룡 소속기관 굿인텔리전스 과목명 단백질 서열정렬 알고리즘 구현 실습 강의시간 2시간 학습목표 단백질 서열 정렬에 대한 이해와 pairwise alignment에 대한 프로그램을 구현 할 수 있다. 강의 선수과목 및 준비사항입니다. 선수과목 Python Programming 참고자료 https://gist.github.com/num3ric/1222752 https://3n.wikipedia.org/wiki/Needleman-Wunsch_algorithm https://en.wikipedia.org/wiki/Smith-Waterman_algorithm 준비사항 python3 설치, Linux terminal 환경
참여자수
53
생물학 & 생물정보학|
화학 & 화학정보학|
교수자/개설자
-
학습기간
2025-08-25 ~ 2029-12-31
강좌소개
성명 이상선 소속기관 인하대학교 강의 명 (주제) 딥러닝을 활용한 약물 특성 및 생물학적 반응 예측 모델링 학습목표 - 딥러닝 기반 약물 예측 모델의 기본 개념과 구조를 이해한다. - 약물의 물리화학적 특성 및 생물학적 반응을 예측하는 다양한 딥러닝 접근법을 학습한다. - 멀티태스크 학습과 단백질-리간드 결합력 예측을 활용한 통합 예측 모델링 기법을 습득한다. 분야 ⍌ AI □ Bio □ Chem ⍌ Drug 단계 심화
참여자수
53
인공지능 & 프로그래밍|
신약개발 & 제약산업|
