Professor
-
Learning Period
04-30-2023 ~ 04-30-2024
Course Introduction
강의 소개 및 개요입니다. 성명 김학수 소속기관 건국대학교 과목명 파이썬 프로그래밍 기초 강의시간 10 학습목표 파이썬 언어의 문법을 익히고 실습을 통해 기본기를 다짐으로써 파이썬 기반 데이터 분석이나 기계학습에 필요한 기본 능력을 배양한다. 강의 선수과목 및 준비사항입니다. 선수과목 - 참고자료 - 준비사항 개인 노트북을 준비하고, 첫 시간에 설명하는 프로그램을 설치해야 함.또한 구글 colab에 접근할 수 있도록 구글 드라이브에 가입해야 함.
Students
243
파이썬프로그래밍|
Professor
-
Learning Period
05-01-2023 ~ 04-30-2024
Course Introduction
강의 소개 및 개요입니다. 성명 이주용 소속기관 강원대학교 과목명 RDKit의 기초와 이를 이용한 화학정보학 실습 강의시간 10 학습목표 1. RDKit의 기본 기능을 익혀 기본적인 분자 입출력 및 물성 분석을 할 수 있다2. Cheminformatics의 기본 개념을 이해하고 실제로 최신 연구에서 어떻게 사용되고 있는지 살펴본다 강의 선수과목 및 준비사항입니다. 선수과목 파이썬, 주피터 노트북, anaconda 또는 venv 같은 가상환경 생성 프로그램 참고자료 www.rdkit.org, 핸즈온 머신러닝 (한빛 미디어) 준비사항 파이썬, 주피터 노트북, 아나콘다 패키지 관리자가 설치된 PC 필요
Students
217
화학정보프로그래밍|
Professor
-
Learning Period
05-01-2023 ~ 05-01-2024
Course Introduction
강의 소개 및 개요입니다. 성명 김이랑 소속기관 온코크로스 과목명 AI 신약개발시 알아야 할 항암제 개요 강의시간 1시간 학습목표 항암제는 AI 신약개발 뿐 아니라 전통신약개발의 경우에도 가장 많이 개발되며, 시장 역시 가장 큰 영역이다. 항암제의 역사, 종류 및 임사에서 항암제 사용 등 항암제 전반에 대해 알아보려 한다.
Students
179
신약개발사례|
Professor
-
Learning Period
04-30-2023 ~ 04-30-2024
Course Introduction
성명 김화종 소속기관 강원대학교 과목명 신약개발에 필요한 머신러닝 이해 강의시간 9 모듈 학습목표 신약개발에 필요한 화합물 데이터를 다루는 방법을 배우고 화합물의 속성을 수치 테이블로 표현하는 방법, Fingerprint, 그래프 등으로 표현하는 분자 표현형을 설명한다. 머신러닝 모델을 구현하는 방법과 랜덤포레스트, MLP, CNN, Graph CNN 등을 배우고 VAE와 GAN 등 생성 모델을 이용한 분자 생성 방법을 배운다.
Students
169
머신러닝|
Professor
박나현
Learning Period
04-30-2023 ~ 04-30-2024
Course Introduction
강의 소개 및 개요입니다. 성명 황 대 희 소속기관 서울대학교 과목명 시스템생물학 강의시간 8 Lecture (4 과정) 학습목표 본 강좌에서는 시스템생물학 교과목으로서 생체 시스템을 이해하기 위한 오믹스 분석 기술, 질병 관련 유전자/단백질 선별을 위한 오믹스 데이터 분석법, 바이오마커(e.g., 진단마커, 약물타겟) 선정과 메커니즘 예측에 필요한 네트워크 분석 방법론을 학습한다.
Students
120
시스템 생물학|
Professor
-
Learning Period
05-01-2023 ~ 04-30-2024
Course Introduction
강의 소개 및 개요입니다. 성명 김우연 소속기관 KAIST 과목명 AI in Predicting Protein-Ligand Interaction (structure-based) 강의시간 8 학습목표 1.단백질 구조 기반 Protein-Ligand Interaction 에 대한 다양한 AI 예측 모델들을 살펴본다. 2. 예측의 정확도 및 일반화 측면에서 다양한 방법들의 장단점을 이해한다. 강의 선수과목 및 준비사항입니다. 선수과목 al Screening (이주용), Deep learning approach (김동섭), Deep learning frameworks (김학수), Deep learning Basic (김학수 참고자료 981 (2019)), GNN-Torg (JCIM, 59, 4131 (2019)), GNN-Jiang(RSCAdv 20, 20701 (2020)), DeepFusion (JCIM, 61, 1583 (2021)), PoseR 준비사항 x
Students
117
DTI|
Professor
-
Learning Period
04-30-2023 ~ 04-30-2024
Course Introduction
강의 소개 및 개요입니다. 성명 김상우 소속기관 연세대학교 과목명 Genomic Analysis (SNV, SV, CNV) 강의시간 5 학습목표 1. NGS 데이터로부터 다양한 유전자 변이를 탐지해 낼 수 있다2. NGS 데이터로부터 유전 변이를 찾아내는 이론을 이해하고, 정확한 결과를 도출할 수 있다 강의 선수과목 및 준비사항입니다. 선수과목 서열분석 (Sequencing Analysis) (기초), Introduction to NGS data analysis (중급) 참고자료 x 준비사항 x
Students
102
유전체학|
Professor
-
Learning Period
05-02-2023 ~ 04-30-2024
Course Introduction
강의 소개 및 개요입니다. 성명 김완규 소속기관 이화여자대학교 과목명 약물-전사체 기반 약물 기전해석 및 신약재창출 강의시간 3 학습목표 1. 약물-전사체 기반 약물 기전 해석의 기본 원리를 이해한다.2. 약물-전사체 기반 신약재창출 기법을 이해한다. 강의 선수과목 및 준비사항입니다. 선수과목 차세대 시퀀싱(NGS) 및 오믹스(전사체) 생명정보 분석 기초 (NGS 데이터 및 Pathway 분석, 클러스터링 기초 지식 등) 참고자료 강의 자료 참조 준비사항 노트북 지참 (권장 사항)
Students
102
바이오분석기술|
Professor
-
Learning Period
05-01-2023 ~ 04-27-2024
Course Introduction
강의 소개 및 개요입니다. 성명 김태민 소속기관 가톨릭대학교 과목명 Multiomics analysis 강의시간 2 학습목표 1. 대표적인 암유전체데이터베이스인 TCGA data를 통해 multiomics분석의 특성 및 실제 응용기법들을 학습한다. 강의 선수과목 및 준비사항입니다. 선수과목 Gene expression analysis, RNA-seq/single cell RNA analysis, Cancer genome analysis 참고자료 - 준비사항 -
Students
87
바이오분석기술|
Professor
-
Learning Period
05-01-2023 ~ 05-01-2024
Course Introduction
강의 소개 및 개요입니다. 성명 김태민 소속기관 가톨릭대학교 과목명 Cancer genome analysis 강의시간 5 학습목표 1. 암유전체의 대표적인 변이 중 돌연변이(mutation) 및 염색체변이(copy number alteration)에 대한 정의 및 대표적인 연구기법 등을 학습한다. 강의 선수과목 및 준비사항입니다. 선수과목 NGS data analysis, Genomics analysis, Big data in precision oncology 참고자료 준비사항 R+ 기반 실습과목
Students
80
유전체학|
Professor
-
Learning Period
05-01-2023 ~ 05-01-2024
Course Introduction
강의 소개 및 개요입니다. 성명 류성옥 소속기관 Galux 과목명 Graph Neural Networks for Molecular Property Prediction 강의시간 7 학습목표 1. Python 언어의 기본 문법을 익혀 기본적인 코딩을 할 수 있다2. Python 프로그래밍에서 필요한 기초적인 변수, 연산, 문자열, 조건문, 반복문, 함수 등을 학습한다. 강의 선수과목 및 준비사항입니다. 선수과목 참고자료 * GNN github repository, https://github.com/SeongokRyu/Graph-neural-networks* Bayesian learning github repository, https://github.com/SeongokRyu/Bayesian-deep-learning* Reliable GNN github repository, https://github.com/AITRICS/mol_reliable_gnn 준비사항 PyTorch 를 설치 및 활용가능한 노트북, 혹은 Google Colab 활용Dataset은 MoleculeNet 및 Therapeutic Data Commons 의 open benchmark를 활용예정
Students
80
약물최적화모델|
Professor
-
Learning Period
04-30-2023 ~ 04-30-2024
Course Introduction
강의 소개 및 개요입니다. 성명 오재성 소속기관 서울대학교병원 과목명 임상 약동학 및 약력학의 기초 강의시간 10시간 학습목표 신약임상개발 과정에서 임상 약동학 및 약력학의 역할을 이해하고 실습을통해 데이터를 해석할 수 있다. 강의 선수과목 및 준비사항입니다. 선수과목 없음 참고자료 Rowland and Tozer's Clinical Pharmacokinetics and Pharmacodynamics:Concepts and Applications (5th ed.) 준비사항 최신버젼의 R program과 R studio가 설치된 컴퓨터
Students
79
약동&약력학|
Professor
-
Learning Period
05-01-2023 ~ 04-30-2024
Course Introduction
강의 소개 및 개요입니다. 성명 김태민 소속기관 가톨릭대학교 과목명 Big data in precision oncology 강의시간 2 학습목표 1. 대표적인 암유전체데이터베이스인 TCGA/ICGC를 통해 big data의 개요 및 구조를 학습한다 강의 선수과목 및 준비사항입니다. 선수과목 Introduction to NGS data analysis, Genomics analysis, Gene expression analysis, RNA-seq/single cell RNA analysis 참고자료 - 준비사항 -
Students
75
바이오데이터수집|
Professor
-
Learning Period
04-30-2023 ~ 04-30-2024
Course Introduction
강의 소개 및 개요입니다. 성명 남진우 소속기관 한양대학교 과목명 차세대 서열분석 강의시간 3 학습목표 1. 차세대서열데이터(NGS)가 무엇인지 이해하고 데이터의 특성에 대해 이해한다.2. 차세대서열데이터(NGS)의 종류와 그 연구목적에 대해 이해한다. 강의 선수과목 및 준비사항입니다. 선수과목 생물정보학 개론, 서열분석, 구조분석, 유전자 발현분석 참고자료 - 준비사항 노트북 웹브라우저
Students
70
유전체학|
Professor
-
Learning Period
05-01-2023 ~ 04-30-2024
Course Introduction
강의 소개 및 개요입니다. 성명 황상연 소속기관 HITS 과목명 Al 기반 protein-ligand interaction 예측 연구의 최신동향 강의시간 4 학습목표 Al 기반 protein-ligand interaction 예측 연구의 최신 동향 (2022) Protein-ligand interaction (PL) 예측을 위한 딥러닝 모델 연구의 최신 동향을 알아본다. 강의는 논문 리뷰로 진행되며, 2020년도 이후의 주목할 만한 PL 예측 모델 연구들을 살피고 관련하여 결합구조 예측 모델의 일부 또한 살핀다. 강의 선수과목 및 준비사항입니다. 선수과목 (권장) Al in Predicting Drug-Protein Interaction (sequence-based) (권장) Al in Predicting Protein-Ligand Interaction (structure-based) 참고자료 리뷰 대상 논문들 준비사항 없음
Students
69
DTI|
Professor
-
Learning Period
04-30-2023 ~ 04-30-2024
Course Introduction
강의소개 및 개요입니다. 성명 최정모 소속기관 부산대학교 화학과 과목명 단백질-리간드 상호작용 계산을 위한 분자동역학 시뮬레이션 방법 강의시간 4시간 학습목표 분자동역학(molecular dynamics; MD) 시뮬레이션 방법의 기초를 익히고, 신약 개발에 널리사용되는 단백질-리간드 상호작용 계산에 응용한다. 강의 선수과목 및 준비사항입니다. 선수과목 기초화학 참고자료 Smit and Frankel, Understanding Molecular Simulation: From Algorithms to Applications 준비사항 해당없음
Students
69
DTI|
Professor
-
Learning Period
04-30-2023 ~ 04-30-2024
Course Introduction
강의 소개 및 개요입니다. 성명 정성원 소속기관 가천대학교 과목명 Omics-based Pathway Analysis 강의시간 3 학습목표 1. Pathway analysis 의 목적 및 그 종류에 따른 특징을 이해한다.2. 널리 사용되는 기초적인 pathway analysis 도구의 사용법을 학습하고 추후 다양한 분석 기법의 활용에 도전한다. 강의 선수과목 및 준비사항입니다. 선수과목 - 참고자료 생물정보학 개론, 유전자발현분석, RNA-seq & Single-cell RNA analysis 준비사항 -
Students
67
바이오분석기술|
Professor
-
Learning Period
05-01-2023 ~ 04-30-2024
Course Introduction
강의 소개 및 개요입니다. 성명 이민호 소속기관 동국대학교 과목명 AI 적용을 위한 약물 fingerprint 및 유사도 계산 강의시간 3 학습목표 1. 약물 파일 포맷의 종류와 개념을 이해하고 이를 데이터베이스로부터 내려받아 활용할 수 있다.2. 약물간의 유사도를 R 프로그래밍 언어를 통해 계산할 수 있다.
Students
65
화학정보프로그래밍|
Professor
-
Learning Period
04-30-2023 ~ 04-30-2024
Course Introduction
강의 소개 및 개요입니다. 성명 남진우 소속기관 한양대학교 과목명 서열분석(DNA,RNA,Protein) 강의시간 4 학습목표 1. DNA, RNA, Protein 서열의 기본적인 정보처리, K-mer 분석, 통계분석에 대해 이해한다.2. DNA, RNA, Protein의 서열의 유사도를 측정하는 기본적일 알고리즘을 이해한다. 강의 선수과목 및 준비사항입니다. 선수과목 일반생물학 참고자료 - 준비사항 노트북 웹브라우저
Students
62
유전체학|
Professor
-
Learning Period
04-30-2023 ~ 04-30-2024
Course Introduction
강의 소개 및 개요입니다. 성명 김현욱 소속기관 한국과학기술원(KAIST) 과목명 바이오 데이터베이스의 활용 강의시간 1시간 학습목표 바이오 네트워크 및 대사모델 구축을 위한 생물정보학 관련 데이터베이스에대한 소개 깅의 선수과목 및 준비사항 입니다. 선수과목 생화학 및 프로그래밍에 대한 기본 지식 참고자료 준비사항 노트북 등 컴퓨터
Students
60
바이오데이터수집|
Professor
-
Learning Period
05-01-2023 ~ 04-30-2024
Course Introduction
강의 소개 및 개요입니다. 성명 이세한 소속기관 Hits 과목명 Molecular Representation Learning & Property Prediction 강의시간 5 학습목표 1. 분자 표현을 이해하고 인공지능 학습에 활용 할 수 있다.2. SMILES, fingerprint, pharmacophore, embedding 등의 분자 구조 표현 방법을 학습한다. 강의 선수과목 및 준비사항입니다. 선수과목 - 참고자료 - 준비사항 노트북 사용, discovery studio visualizer & PaDEL 설치
Students
59
화학정보프로그래밍|