교수자/개설자
-
학습기간
2024-11-29 ~ 2029-12-31
강좌소개
※ AI 신약개발 교재 학습을 위한 강의 모음입니다. (수료증 미발급) 성명 김우연 소속기관 KAIST 화학과 강의 명 (주제) 초보자를 위한 AI 신약개발 “Introduction to AI-based drug discovery” 학습목표 신약개발 및 AI의 기초 개념을 익히고, 이를 바탕으로 초기단계 신약개발에서 최신 AI 기술이 어떻게 활용되는지 이해 분야 ■ AI □ Bio ■ Chem ■ Drug 단계 기초
참여자수
372
인공지능 & 프로그래밍|
교수자/개설자
-
학습기간
2024-09-01 ~ 2029-12-31
강좌소개
성명 김동섭 소속기관 한국과학기술원 강의 명 (주제) 단백질 구조 예측 및 단백질 설계를 위한 최신 딥러닝 기술 학습목표 - 단백질 구조 예측의 원리의 이해 - template-based 모델링을 통한 단백질 구조 예측법 이해 및 실습 - Alphafold를 이용한 단백질 구조 예측 모델 이해 및 실습 - 단백질 설계의 필요성 및 원리 이해 RFDiffusion을 사용한 단백질 설계의 이해 및 실습 분야 AI, Bio 단계 심화
참여자수
218
인공지능 & 프로그래밍|
교수자/개설자
-
학습기간
2024-03-01 ~ 2025-12-31
강좌소개
강의소개 및 개요입니다. 성명 최정모 소속기관 부산대학교 화학과 과목명 단백질-리간드 상호작용 계산을 위한 분자동역학 시뮬레이션 방법 강의시간 4시간 학습목표 분자동역학(molecular dynamics; MD) 시뮬레이션 방법의 기초를 익히고, 신약 개발에 널리사용되는 단백질-리간드 상호작용 계산에 응용한다. 강의 선수과목 및 준비사항입니다. 선수과목 기초화학 참고자료 Smit and Frankel, Understanding Molecular Simulation: From Algorithms to Applications 준비사항 해당없음
참여자수
196
화학 & 화학정보학|
교수자/개설자
-
학습기간
2024-03-01 ~ 2025-12-31
강좌소개
강의 소개 및 개요입니다. 성명 김우연 소속기관 KAIST 과목명 AI in Predicting Protein-Ligand Interaction (structure-based) 강의시간 8 학습목표 1.단백질 구조 기반 Protein-Ligand Interaction 에 대한 다양한 AI 예측 모델들을 살펴본다. 2. 예측의 정확도 및 일반화 측면에서 다양한 방법들의 장단점을 이해한다. 강의 선수과목 및 준비사항입니다. 선수과목 al Screening (이주용), Deep learning approach (김동섭), Deep learning frameworks (김학수), Deep learning Basic (김학수 참고자료 981 (2019)), GNN-Torg (JCIM, 59, 4131 (2019)), GNN-Jiang(RSCAdv 20, 20701 (2020)), DeepFusion (JCIM, 61, 1583 (2021)), PoseR 준비사항 x
참여자수
195
화학 & 화학정보학|
교수자/개설자
-
학습기간
2024-11-25 ~ 2029-12-31
강좌소개
성명 빈진혁 소속기관 연세대학교 의과대학 강의 명 (주제) ML/AI 기반 유전체-단백체 멀티오믹스 통합분석 방법론 학습목표 최근 바이오텍 기술의 발전으로 인해 다양한 레벨의 생명정보 데이터들이 생성 및 축적되고 있으며, 이러한 데이터들을 통합 분석하는 방법론들도 인공지능 기술의 발달과 더불어 활발하게 개발되고 있다. 본 강의에서는 유전체/전사체/단백체 데이터들이 통합되는 방법론과 실제 개발된 툴들을 사용해봄으로써 데이터 통합에 대한 이해 및 경험을 쌓는 것을 목표로 한다. 분야 □ AI ■ Bio □ Chem □ Drug 단계 심화
참여자수
186
인공지능 & 프로그래밍|
생물학 & 생물정보학|
교수자/개설자
-
학습기간
2024-11-20 ~ 2029-12-31
강좌소개
성명 이윤지 소속기관 중앙대학교 약학대학 강의 명 (주제) 생물정보학을 활용한 단백질 간 상호작용 및 복합체 모델링 학습목표 본 강의에서는 AI와 생물정보학 도구를 활용하여 단백질 간 상호작용(PPI)과 단백질 복합체 모델링에 대해 학습한다. 생물학적 서열 분석을 기초로 하여, 단백질 상호작용의 중요성과 이를 기반으로 한 복합체 모델링 기법에 대해 소개한다. 학생들은 서열 분석과 PPI 연구를 바탕으로 실제 단백질 복합체를 모델링하는 과정을 배우며, 최신 기술이 이 과정에서 어떻 게 활용되는지, 한계는 무엇인지 이해한다. 분야 □ AI ■ Bio □ Chem □ Drug 단계 기초 / 심화
참여자수
180
생물학 & 생물정보학|
교수자/개설자
-
학습기간
2024-03-01 ~ 2025-12-31
강좌소개
강의 소개 및 개요입니다. 성명 김동섭 소속기관 KAIST 과목명 QSAR 강의시간 5 학습목표 1. QSAR 모델 개발 과정2. 화합물구조의 수식화와 Descriptors3. QSAR를 위한 기계학습법4. Bioactivity prediction5. Proteochemometric modeling
참여자수
173
화학 & 화학정보학|
교수자/개설자
-
학습기간
2024-09-01 ~ 2029-12-31
강좌소개
성명 선 호 근 소속기관 부산대학교 통계학과 강의 명 (주제) R을 활용한 유전체 빅데이터 통계 분석 (Statistical analysis of high-dimensional genomic data using R) 학습목표 유전체 발현량 데이터와 DNA 메틸화 데이터와 같은 고차원 유전체 데이터를 분석하는 통계적 검정 방법들과 벌점함수 기반 변수선택 방법들을 학습시키고, 통계 패키지 R을 사용하여 실제 유전체 빅데이터를 분석하는 실습을 통해 학생들의 데이터 분석 능력을 향상시킨다. 분야 AI, Bio 단계 기초 및 심화
참여자수
169
인공지능 & 프로그래밍|
교수자/개설자
-
학습기간
2024-11-12 ~ 2029-12-31
강좌소개
성명 강수임 소속기관 미국 콜롬비아 대학교 강의 명 (주제) AI-Powered Drug Discovery 관련 최근 연구동향 파악 학습목표 1. 신약개발에 이용되는 인공지능 모델연구 동향파악 2. 최신 인공지능 신약개발 관련 논문들과 플래폼을 소개 분야 ■ AI □ Bio □ Chem ■ Drug 단계
참여자수
168
인공지능 & 프로그래밍|
신약개발 & 제약산업|
교수자/개설자
-
학습기간
2024-03-01 ~ 2025-12-31
강좌소개
강의 소개 및 개요입니다. 성명 김태민 소속기관 가톨릭대학교 과목명 Big data in precision oncology 강의시간 2 학습목표 1. 대표적인 암유전체데이터베이스인 TCGA/ICGC를 통해 big data의 개요 및 구조를 학습한다 강의 선수과목 및 준비사항입니다. 선수과목 Introduction to NGS data analysis, Genomics analysis, Gene expression analysis, RNA-seq/single cell RNA analysis 참고자료 - 준비사항 -
참여자수
146
생물학 & 생물정보학|
교수자/개설자
-
학습기간
2024-11-25 ~ 2029-12-31
강좌소개
성명 김은지 소속기관 코오롱인더스트리 강의 명 (주제) 화학정보학의 기초: AI와 계산 화학으로 풀어보는 신약 개발 학습목표 이 강의는 화학정보학의 기초를 배우고, AI, 분자동역학, 양자계산을 신약 개발에 어떻게 활용하는지 설명합니다. 참가자는 약물 설계와 용해도 파라미터 예측 등 중요한 화학적 특성을 예측하는 방법을 익히게 됩니다. 분야 AI □ Bio Chem □ Drug 단계 기초
참여자수
146
화학 & 화학정보학|
교수자/개설자
-
학습기간
2024-03-01 ~ 2025-12-31
강좌소개
성명 김화종 소속기관 강원대학교 과목명 신약개발에 필요한 머신러닝 이해 강의시간 9 모듈 학습목표 신약개발에 필요한 화합물 데이터를 다루는 방법을 배우고 화합물의 속성을 수치 테이블로 표현하는 방법, Fingerprint, 그래프 등으로 표현하는 분자 표현형을 설명한다. 머신러닝 모델을 구현하는 방법과 랜덤포레스트, MLP, CNN, Graph CNN 등을 배우고 VAE와 GAN 등 생성 모델을 이용한 분자 생성 방법을 배운다.
참여자수
144
화학 & 화학정보학|
교수자/개설자
-
학습기간
2024-03-01 ~ 2025-12-31
강좌소개
강의 소개 및 개요입니다. 성명 남호정 소속기관 GIST 과목명 Lecture : AI in Predicting Drug-protein Interaction(sequence-based) 강의시간 2 학습목표 1. 단백질 서열을 사용하여 화합물-단백질 상호작용을 예측하는 다양한 방법론을 학습한다.2. 기계학습, 딥러닝 기반 화합물-단백질 상호작용 예측 모델들에 대해 학습한다. 강의 선수과목 및 준비사항입니다. 선수과목 Deep Learning Advanced (inductive bias, self-supervised learning, semi-supervised learning, Attention, Transformeretc.)Graph Deep Learning(GCN, GAT, GIN, GGNN, MPNN, etc.) 참고자료 doi: 10.1093/bib/bbz157doi: 10.1093/bib/bbab046 준비사항 Colab 접속 가능 환경
참여자수
144
화학 & 화학정보학|
교수자/개설자
-
학습기간
2024-03-01 ~ 2025-12-31
강좌소개
강의 소개 및 개요입니다. 성명 김태민 소속기관 가톨릭대학교 과목명 Multiomics analysis 강의시간 2 학습목표 1. 대표적인 암유전체데이터베이스인 TCGA data를 통해 multiomics분석의 특성 및 실제 응용기법들을 학습한다. 강의 선수과목 및 준비사항입니다. 선수과목 Gene expression analysis, RNA-seq/single cell RNA analysis, Cancer genome analysis 참고자료 - 준비사항 -
참여자수
140
생물학 & 생물정보학|
교수자/개설자
-
학습기간
2024-03-01 ~ 2025-12-31
강좌소개
강의 소개 및 개요입니다. 성명 홍동완 소속기관 가톨릭대학교 의과대학 과목명 알파폴드를 이용한 단백질 구조 예측 및 평가 강의시간 2시간 학습목표 인공지능 기반 단배길 구조 예측 도구인 알파폴드를 이용하여 주어진 아미노산 서열에 대해 단백질 구조를 예측하는 실습을 진행하고. 예측된 단백질 구조를 이해하고 이들 결과를 평가할 수있는 능력을 키운다. 강의 선수과목 및 준비사항입니다. 선수과목 단백질 데이터 베이스, 단백질 생물정보학 참고자료 - 도서, 웹사이트, 논문 등 준비사항 랩탑 컴퓨터, 데스크탑 컴퓨터
참여자수
140
생물학 & 생물정보학|
교수자/개설자
-
학습기간
2024-04-15 ~ 2025-12-31
강좌소개
강의 소개 및 개요 입니다. 성명 김학수 소속기관 건국대학교 과목명 자연어처리 강의시간 6시간 학습목표 1. 자연어처리에 대한 기본 개념을 이해한다. 2. 자연어처리 문제를 기계학습을 통해 해결하는 방법을 이해하고 구현한다. 3. 대용량 언어모델을 이해하고 자연어처리 문제에 적용하는 방법을 학습한다. 강의 선수과목 및 준비사항입니다. 선수과목 파이썬 프로그래밍, 기계학습 참고자료 준비사항 인터넷 연결 가능한 PC(또는 노트북) 구글 코랩 연결을 위한 구글 드라이브 개인 아이디
참여자수
136
인공지능 & 프로그래밍|
교수자/개설자
-
학습기간
2024-03-01 ~ 2025-12-31
강좌소개
강의 소개 및 개요입니다. 성명 남진우 소속기관 한양대학교 과목명 서열분석(DNA,RNA,Protein) 강의시간 4 학습목표 1. DNA, RNA, Protein 서열의 기본적인 정보처리, K-mer 분석, 통계분석에 대해 이해한다.2. DNA, RNA, Protein의 서열의 유사도를 측정하는 기본적일 알고리즘을 이해한다. 강의 선수과목 및 준비사항입니다. 선수과목 일반생물학 참고자료 - 준비사항 노트북 웹브라우저
참여자수
132
생물학 & 생물정보학|
교수자/개설자
-
학습기간
2024-03-01 ~ 2025-12-31
강좌소개
강의 소개 및 개요입니다. 성명 정성원 소속기관 가천대학교 과목명 Omics-based Pathway Analysis 강의시간 3 학습목표 1. Pathway analysis 의 목적 및 그 종류에 따른 특징을 이해한다.2. 널리 사용되는 기초적인 pathway analysis 도구의 사용법을 학습하고 추후 다양한 분석 기법의 활용에 도전한다. 강의 선수과목 및 준비사항입니다. 선수과목 - 참고자료 생물정보학 개론, 유전자발현분석, RNA-seq & Single-cell RNA analysis 준비사항 -
참여자수
130
생물학 & 생물정보학|
교수자/개설자
-
학습기간
2024-03-01 ~ 2025-12-31
강좌소개
강의시간 강의내용 실습여부 1 마이크로바이옴 연구의 개요 및 연구사례 없음 2 마이크로바이옴 데이터의 이해: 16S rRNA gene sequencing 과 Shotgun metagenomic sequencing 없음 3 마이크로바이옴 데이터의 질 평가: 시퀀싱부터 원시데이터 이해 없음 4 마이크로바이옴 연구 결과 해석을 위해 기본적으로 알아야할 개념: Diversity 및 Taxonomy 없음 5 마이크로바이옴 연구 결과의 이해 및 활용 없음
참여자수
129
생물학 & 생물정보학|