Professor
-
Learning Period
10-24-2025 ~ 12-31-2029
Course Introduction
성명 박계명 소속기관 울산과학기술원 강의 명 (주제) 차세대 면역치료제 개발을 위한 인실리코 면역계 모델링 학습목표 최근 많은 다양한 질환들(암, 감염병, 자가면역(염증)질환)에서 면역계를 직접 표적으로 하는 면역치료법이 주요 치료방법으로 대두되고 있다. 그러나 각 질환에 관여하는 면역계의 복잡계적 특징으로 인하여 주요 분자 및 세포 타겟 발굴과 각 환자에 대한 면역치료 반응에 대한 예측에 어려움이 있다. 본 강의에서는 본 강의자의 연구 분야인 시스템 면역학적 관점에서 면역계의 행동에 대한 예측적 이해를 위한 인실리코 면역계 모델링 전반을 다루고 이 시도가 어떻게 차세대 면역치료제 개발을 가속화할 수 있을지 고찰하고자 한다. 분야 AI Bio □ Chem Drug 단계 심화
Students
32
인공지능 & 프로그래밍|
생물학 & 생물정보학|
신약개발 & 제약산업|
Professor
-
Learning Period
09-04-2025 ~ 12-31-2029
Course Introduction
성명 김권일 소속기관 경희대학교 생물학과 강의 명 (주제) 멀티오믹스 데이터를 활용한 암 면역원성 분석 실습 학습목표 멀티오믹스 데이터와 AI 기술을 기반으로 암 면역원성에 대한 최신 연구 동향을 이해하고, 신생항원 예측, digital cytometry, 면역세포 클러스터링 등의 분석 기법을 실습함으로써, 공개된 암 멀티오믹스 데이터를 활용해 종양의 면역원성 양상을 해석하는 역량을 기른다. 분야 ■ AI ■ Bio □ Chem □ Drug 단계 기초
Students
42
인공지능 & 프로그래밍|
생물학 & 생물정보학|
Professor
-
Learning Period
11-25-2024 ~ 12-31-2029
Course Introduction
성명 빈진혁 소속기관 연세대학교 의과대학 강의 명 (주제) ML/AI 기반 유전체-단백체 멀티오믹스 통합분석 방법론 학습목표 최근 바이오텍 기술의 발전으로 인해 다양한 레벨의 생명정보 데이터들이 생성 및 축적되고 있으며, 이러한 데이터들을 통합 분석하는 방법론들도 인공지능 기술의 발달과 더불어 활발하게 개발되고 있다. 본 강의에서는 유전체/전사체/단백체 데이터들이 통합되는 방법론과 실제 개발된 툴들을 사용해봄으로써 데이터 통합에 대한 이해 및 경험을 쌓는 것을 목표로 한다. 분야 □ AI ■ Bio □ Chem □ Drug 단계 심화
Students
279
인공지능 & 프로그래밍|
생물학 & 생물정보학|
Professor
-
Learning Period
09-12-2024 ~ 12-31-2029
Course Introduction
성명 김선, 이선호 소속기관 서울대학교, 아이겐드럭 강의 명 (주제) Deep learning models for drug response prediction 학습목표 약물 반응성 예측의 주요 원리와 연구 동향을 파악하고, 인공지능 약물 반응성 예측을 위한 딥러닝 방법론 및 주요 데이터베이스를 포괄적으로 학습하여 이를 실제 연구에 적용할 수 있는 기본 능력을 배양한다. 분야 AI 단계 심화
Students
139
인공지능 & 프로그래밍|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2025
Course Introduction
강의 소개 및 개요입니다. 성명 김태민 소속기관 가톨릭대학교 과목명 Big data in precision oncology 강의시간 2 학습목표 1. 대표적인 암유전체데이터베이스인 TCGA/ICGC를 통해 big data의 개요 및 구조를 학습한다 강의 선수과목 및 준비사항입니다. 선수과목 Introduction to NGS data analysis, Genomics analysis, Gene expression analysis, RNA-seq/single cell RNA analysis 참고자료 - 준비사항 -
Students
179
생물학 & 생물정보학|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2025
Course Introduction
강의 소개 및 개요입니다. 성명 김태민 소속기관 가톨릭대학교 과목명 Multiomics analysis 강의시간 2 학습목표 1. 대표적인 암유전체데이터베이스인 TCGA data를 통해 multiomics분석의 특성 및 실제 응용기법들을 학습한다. 강의 선수과목 및 준비사항입니다. 선수과목 Gene expression analysis, RNA-seq/single cell RNA analysis, Cancer genome analysis 참고자료 - 준비사항 -
Students
181
생물학 & 생물정보학|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2025
Course Introduction
강의시간 강의내용 실습여부 1 질병 멀티오믹스 데이터에 클러스터링 및 네트워크 분석을 활용한 최신 연구 2 멀티오믹스 데이터 클러스터링 분석의 기초 개념과 적용 사례 3 멀티 오믹스 데이터에 대한 네트워크 분석 적용의 기초 개념과 적용 사례 4 NMF 클러스터링 중심의 멀티오믹스 데이터 클러스터링 분석 실습 O 5 MOFA tool을 활용한 멀티오믹스 데이터 클러스터링 분석 및 해석 실습 O 6 PHONEMES tool을 활용한 멀티오믹스 데이터 네트워크 분석 및 해석 실습 O
Students
75
생물학 & 생물정보학|