교수자/개설자
-
학습기간
2025-12-08 ~ 2029-12-31
강좌소개
성명 신상 소속기관 에이블랩스 강의 명 (주제) SDL 실질적 적용을 위한 도움닫기 학습목표 바이오 산업에서의 SDL 구성 예시와 장비 API 기반의 활용 방안 분야 □ AI □ Bio ⍌ Chem □ Drug 단계 기초
참여자수
2
인공지능 & 프로그래밍|
생물학 & 생물정보학|
교수자/개설자
-
학습기간
2025-12-08 ~ 2029-12-31
강좌소개
성명 김 현 욱 소속기관 한국과학기술원(KAIST) 강의 명 (주제) 바이오제조와 AI 학습목표 바이오제조의 개념과 대사공학·합성생물학의 발전을 이해하고, 생물 기반 화학물질 및 연료 생산 기술의 원리를 학습. 미생물 대사공학의 10가지 전략과 발효공정의 7가지 핵심 요인을 통해 생산 효율과 공정 최적화의 원리를 이해. AI와 데이터 마이닝 기술이 바이오파운드리 및 실험 자동화에 기여하는 역할을 파악. 분야 □ AI □ Bio □ Chem □ Drug 단계 기초
참여자수
4
인공지능 & 프로그래밍|
생물학 & 생물정보학|
교수자/개설자
-
학습기간
2025-12-08 ~ 2029-12-31
강좌소개
성명 정성훈 소속기관 연세대학교 약학대학 강의 명 (주제) 의약바이오 제제개발을 위한 AI기반 품질 최적화 및 모델링 활용 학습목표 바이오의약품 및 의약품 개발과정에서 우수한 품질 확보를 위해 기존의 설계기반 품질고도화 (QbD) 전략에 의한 설계공간 도출 및 시뮬레이션을 통한 최적화 과정을 사례중심으로 소개하고 실험계획법의 이해도 제고와 최근 인공지능을 기반으로 AI기반 제제 및 품질 최적화등 산업적으로 적용가능한 제품개발에 대한 내용을 소개함. 분야 □ AI □ Bio □ Chem ■ Drug 단계 기초
참여자수
3
신약개발 & 제약산업|
교수자/개설자
-
학습기간
2025-12-04 ~ 2029-12-31
강좌소개
성명 이남일 소속기관 KAIST 강의 명 (주제) 바이오파운드리를 이용한 천연/비천연 신약 후보 물질 스크리닝 및 생산 학습목표 본 강의에서는 자동화와 인공지능을 기반으로 한 바이오파운드리의 개념과 핵심 구성요소를 이해하고, 이를 활용하여 천연 및 비천연 신약 후보 물질을 대규모로 스크리닝하고 생산하는 전략을 학습한다. 또한 실제 사례를 통해 신약 후보 발굴 및 생산 최적화 과정에서의 바이오파운드리 활용 방안을 종합적으로 탐구한다. 분야 ■ AI ■ Bio ■ Chem ■ Drug 단계 기초
참여자수
5
인공지능 & 프로그래밍|
생물학 & 생물정보학|
화학 & 화학정보학|
신약개발 & 제약산업|
교수자/개설자
-
학습기간
2025-12-04 ~ 2029-12-31
강좌소개
성명 이창선 소속기관 인하대학교 강의 명 (주제) 인과 지식 조립, 예측 모델 생성 AI 학습목표 인과 기반 예측은 철강, 반도체, 에너지, 화학, 제약 등과 같이 여러 인과 요인이 단계적으로 연결되어 결과를 만들어 내는 복잡한 제조 분야에서 필수적이다. 인과를 이해하는 인간과 데이터 패턴 학습 능력이 뛰어난 AI 가 협력하여야, 설명할 수 있고, 신뢰할 수 있는 예측 모델 개발이 가능하다. 인간과 AI의 협력을 위한 프로토콜 이해가 학습 목표이다. 분야 AI □ Bio □ Chem □ Drug 단계 기초
참여자수
2
인공지능 & 프로그래밍|
생물학 & 생물정보학|
화학 & 화학정보학|
교수자/개설자
-
학습기간
2025-11-14 ~ 2029-12-31
강좌소개
성명 김태형 소속기관 바이오넥서스 강의 명 (주제) 멀티에이전트 시스템 이해와 제약·바이오 산업 적용 학습목표 멀티에이전트 시스템의 개념, 구조, 그리고 의사결정·협업 메커니즘을 이해한다. 제약·바이오 산업의 신약개발 전주기에서 MAS가 수행할 수 있는 역할과 적용 사례를 분석한다. 실제 산업 환경에서 멀티에이전트 기반 워크플로를 설계·구성하여 생산성 및 연구 효율을 향상시키는 방법을 익힌다. 분야 V AI V Bio □ Chem □ Drug 단계 기초 / 심화
참여자수
16
인공지능 & 프로그래밍|
신약개발 & 제약산업|
교수자/개설자
-
학습기간
2025-10-31 ~ 2029-12-31
강좌소개
성명 이 남 용 소속기관 CellKey AI 강의 명 (주제) AI와 LLM을 활용한 바이오 분야의 혁신 학습목표 AI와 LLM 기술이 신약개발부터 바이오 생산공정, 임상시험 최적화에 이르기까지 바이오 산업 전반에 혁신적 변화를 가져오고 있다. 본 강의에서는 최신 AI 기술의 개념을 이해하고 실제 적용 사례를 통해 효율성 향상과 비용 절감 성과에 대한 이해를 돕는 것을 목표로 한다. 분야 ■ AI □ Bio □ Chem □ Drug 단계 기초
참여자수
50
인공지능 & 프로그래밍|
교수자/개설자
-
학습기간
2025-10-24 ~ 2029-12-31
강좌소개
성명 박계명 소속기관 울산과학기술원 강의 명 (주제) 차세대 면역치료제 개발을 위한 인실리코 면역계 모델링 학습목표 최근 많은 다양한 질환들(암, 감염병, 자가면역(염증)질환)에서 면역계를 직접 표적으로 하는 면역치료법이 주요 치료방법으로 대두되고 있다. 그러나 각 질환에 관여하는 면역계의 복잡계적 특징으로 인하여 주요 분자 및 세포 타겟 발굴과 각 환자에 대한 면역치료 반응에 대한 예측에 어려움이 있다. 본 강의에서는 본 강의자의 연구 분야인 시스템 면역학적 관점에서 면역계의 행동에 대한 예측적 이해를 위한 인실리코 면역계 모델링 전반을 다루고 이 시도가 어떻게 차세대 면역치료제 개발을 가속화할 수 있을지 고찰하고자 한다. 분야 AI Bio □ Chem Drug 단계 심화
참여자수
32
인공지능 & 프로그래밍|
생물학 & 생물정보학|
신약개발 & 제약산업|
교수자/개설자
-
학습기간
2024-11-25 ~ 2029-12-31
강좌소개
성명 김은지 소속기관 코오롱인더스트리 강의 명 (주제) 화학정보학의 기초: AI와 계산 화학으로 풀어보는 신약 개발 학습목표 이 강의는 화학정보학의 기초를 배우고, AI, 분자동역학, 양자계산을 신약 개발에 어떻게 활용하는지 설명합니다. 참가자는 약물 설계와 용해도 파라미터 예측 등 중요한 화학적 특성을 예측하는 방법을 익히게 됩니다. 분야 AI □ Bio Chem □ Drug 단계 기초
참여자수
213
화학 & 화학정보학|
교수자/개설자
-
학습기간
2024-11-20 ~ 2029-12-31
강좌소개
성명 이윤지 소속기관 중앙대학교 약학대학 강의 명 (주제) 생물정보학을 활용한 단백질 간 상호작용 및 복합체 모델링 학습목표 본 강의에서는 AI와 생물정보학 도구를 활용하여 단백질 간 상호작용(PPI)과 단백질 복합체 모델링에 대해 학습한다. 생물학적 서열 분석을 기초로 하여, 단백질 상호작용의 중요성과 이를 기반으로 한 복합체 모델링 기법에 대해 소개한다. 학생들은 서열 분석과 PPI 연구를 바탕으로 실제 단백질 복합체를 모델링하는 과정을 배우며, 최신 기술이 이 과정에서 어떻 게 활용되는지, 한계는 무엇인지 이해한다. 분야 □ AI ■ Bio □ Chem □ Drug 단계 기초 / 심화
참여자수
247
생물학 & 생물정보학|
교수자/개설자
-
학습기간
2024-11-07 ~ 2029-12-31
강좌소개
성명 조혜영 소속기관 차의과학대학교 약학대학 강의 명 (주제) 분산형 임상시험 (Decentralized Clinical Trial, DCT) 학습목표 최근 분산형 임상시험(DCT)의 필요성과 현장 수요가 증가되면서 우리나라 정부에서도 글로벌 경쟁력을 강화하고 임상시험 참여 기회를 확대해 신약 접근성을 제고할 수 있도록 DCT 도입을 위한 기반 마련을 지원하고 있으므로 DCT의 개념과 장단점을 이해하고 DCT 수행을 위한 제도적 개선 방향에 대해 검토한다. 분야 □ AI ■ Bio □ Chem ■ Drug 단계 기초
참여자수
44
임상개발 & 임상데이터|
교수자/개설자
-
학습기간
2024-10-24 ~ 2029-12-31
강좌소개
성명 송길태 소속기관 부산대학교 강의 명 (주제) Recommendation systems in bioinformatics 학습목표 1. Recommendation systems에 대한 기본 개념을 이해한다. 2. Recommendation systems을 활용하여 표적 단백질 결합 후보 물질 추천 및 바이오마커 발굴 등의 문제를 해결하는 방법을 학습한다. 분야 AI 단계 심화
참여자수
40
신약개발 & 제약산업|
교수자/개설자
-
학습기간
2024-10-11 ~ 2029-12-31
강좌소개
성명 박대찬 소속기관 아주대학교 강의 명 (주제) NGS와 AI를 이용한 항체 레퍼토리 (repertoire) 분석 학습목표 생체 내에서 B 세포의 발달 및 B cell receptor (BCR 또는 항체)의 다양성과 항원 특이성이 확보되는 면역학 기초를 배운다. 천문학적인 BCR 다양성 분석을 위해 NGS 기반 BCR 시퀀 싱 데이터를 생산하는 최신 연구 기법을 학습한다. 생명정보학적 분석법으로 BCR의 V gene usage와 complementarity-determining regions (CDR) 서열을 동정하는 법을 배우고 딥러닝으 로 대규모 DNA 서열과 아미노산 서열을 학습하는 방법을 배운다. 분야 Bio 단계 기초
참여자수
81
인공지능 & 프로그래밍|
교수자/개설자
-
학습기간
2024-10-10 ~ 2029-12-31
강좌소개
성명 허기영 소속기관 서울대학교병원 강의 명 (주제) 비임상자료에 기반한 임상 약동학 예측 학습목표 약동학(Pharmacokinetics)의 정의와 주요 용어의 의미를 이해하고, 이를 바탕으로 임상시험 자료를 해석한다. 계량약리학(population pharmacokinetics)을 중심으로 비임상-임상 약동학 예측을 위한 방법론을 설명한다. 생리학기반 약동학(PBPK) 및 AI를 활용한 약동학 예측 방법에 대해 설명한다. 분야 Drug 단계 기초
참여자수
154
임상개발 & 임상데이터|
교수자/개설자
-
학습기간
2024-09-01 ~ 2029-12-31
강좌소개
성명 선 호 근 소속기관 부산대학교 통계학과 강의 명 (주제) R을 활용한 유전체 빅데이터 통계 분석 (Statistical analysis of high-dimensional genomic data using R) 학습목표 유전체 발현량 데이터와 DNA 메틸화 데이터와 같은 고차원 유전체 데이터를 분석하는 통계적 검정 방법들과 벌점함수 기반 변수선택 방법들을 학습시키고, 통계 패키지 R을 사용하여 실제 유전체 빅데이터를 분석하는 실습을 통해 학생들의 데이터 분석 능력을 향상시킨다. 분야 AI, Bio 단계 기초 및 심화
참여자수
204
인공지능 & 프로그래밍|
교수자/개설자
-
학습기간
2024-03-01 ~ 2025-12-31
강좌소개
강의 소개 및 개요입니다. 성명 김우연 소속기관 KAIST 과목명 AI in Predicting Protein-Ligand Interaction (structure-based) 강의시간 8 학습목표 1.단백질 구조 기반 Protein-Ligand Interaction 에 대한 다양한 AI 예측 모델들을 살펴본다. 2. 예측의 정확도 및 일반화 측면에서 다양한 방법들의 장단점을 이해한다. 강의 선수과목 및 준비사항입니다. 선수과목 al Screening (이주용), Deep learning approach (김동섭), Deep learning frameworks (김학수), Deep learning Basic (김학수 참고자료 981 (2019)), GNN-Torg (JCIM, 59, 4131 (2019)), GNN-Jiang(RSCAdv 20, 20701 (2020)), DeepFusion (JCIM, 61, 1583 (2021)), PoseR 준비사항 x
참여자수
267
화학 & 화학정보학|
교수자/개설자
-
학습기간
2024-03-01 ~ 2025-12-31
강좌소개
강의시간 강의내용 실습여부 1 - Self-Supervised Learning이란? - Language 분야에서의 SSL - Computer vision 분야에서의 SSL X 2 - Molecular Graph란? - Graph Neural Networks - Molecular Graph 분야에서의 SSL X
참여자수
46
인공지능 & 프로그래밍|
교수자/개설자
-
학습기간
2024-03-01 ~ 2025-12-31
강좌소개
강의소개 및 개요입니다. 성명 최정모 소속기관 부산대학교 화학과 과목명 단백질-리간드 상호작용 계산을 위한 분자동역학 시뮬레이션 방법 강의시간 4시간 학습목표 분자동역학(molecular dynamics; MD) 시뮬레이션 방법의 기초를 익히고, 신약 개발에 널리사용되는 단백질-리간드 상호작용 계산에 응용한다. 강의 선수과목 및 준비사항입니다. 선수과목 기초화학 참고자료 Smit and Frankel, Understanding Molecular Simulation: From Algorithms to Applications 준비사항 해당없음
참여자수
267
화학 & 화학정보학|
교수자/개설자
-
학습기간
2024-03-01 ~ 2025-12-31
강좌소개
강의 소개 및 개요입니다. 성명 홍동완 소속기관 가톨릭대학교 의과대학 과목명 알파폴드를 이용한 단백질 구조 예측 및 평가 강의시간 2시간 학습목표 인공지능 기반 단배길 구조 예측 도구인 알파폴드를 이용하여 주어진 아미노산 서열에 대해 단백질 구조를 예측하는 실습을 진행하고. 예측된 단백질 구조를 이해하고 이들 결과를 평가할 수있는 능력을 키운다. 강의 선수과목 및 준비사항입니다. 선수과목 단백질 데이터 베이스, 단백질 생물정보학 참고자료 - 도서, 웹사이트, 논문 등 준비사항 랩탑 컴퓨터, 데스크탑 컴퓨터
참여자수
182
생물학 & 생물정보학|
교수자/개설자
-
학습기간
2024-03-01 ~ 2025-12-31
강좌소개
강의 소개 및 개요입니다. 성명 권진선 소속기관 (주)애임스바이오사이언스 과목명 인공지능 빅데이터 활용 신약개발 연구동향 및 연구사례 강의시간 2시간 학습목표 AI활용 신약 개발 산업 동향 및 연구 동향 파악AI 활용 신약 개발 연구 방향 제언
참여자수
187
인공지능 & 프로그래밍|
신약개발 & 제약산업|
