9 Course(s)

Professor

-

Learning Period

11-27-2025 ~ 12-31-2029

Course Introduction

목차 (강의시간) 강의내용 실습여부 교수자 1 LLM이 어떻게 작동하는지 핵심 개념을 이해한다 LLM은 언어 패턴을 배우는 매우 거대한 통계 모델 GPT는 문장을 예측하는 데 특화된 구조 (Transformer 기반) 프롬프트, 토큰, 파라미터 같은 용어에 대한 기초 개념을 익힌다   X 본인 김요섭 2 잘 묻는 사람이 AI를 잘 쓴다: Prompt Engineering 입문 좋은 프롬프트의 3가지 조건 → 명확성, 역할 부여, 단계화 프롬프트 템플릿 소개 (Prompt chain, Role-based template)   X 본인 김요섭 3 GPT가 외부 지식을 활용하도록 만드는 RAG의 원리와 구성 이해 GPT의 한계: 훈련된 지식 외 질문은 “헛다리” 가능성 RAG 구조 이해 (간단한 그림 중심 설명) Query → Retriever → Context → GPT 적용 예시: → 논문 검색 & 요약 → 특정 약물에 대한 최신 정보 연결 실전 RAG 워크플로우 따라가기: PDF, Text, 데이터베이스 연결   X 본인 김요섭 4 “Agentic AI”란 무엇인가? 구성요소 통합: 프롬프트 → 외부 문서 검색(RAG) → 도구 실행(API) 구조설계: Agent 워크플로우 직접 그려보기 간단한 GPTs App publish 해서 연구원들과 공유하기   X 본인 김요섭 선수과목 없음 참고자료 없음 준비사항 없음

Students

8

Certificate

인공지능 & 프로그래밍|

신약개발 & 제약산업|

How to build an Agentic AI for drug discovery

Professor

-

Learning Period

03-01-2024 ~ 12-31-2025

Course Introduction

강의 소개 및 개요입니다. 성명 석차옥 소속기관 서울대학교 과목명 신약개발을위한단백질구조예측및상호작용예측 강의시간 11 학습목표 1. 첨단 단백질 구조 예측 및 상호작용 예측의 원리를 배우고 예측 가능 범위를 파악한다.2. 신약개발에 활용될 수 있는 관련 소프트웨어 및 웹서버 활용법에 대해 익힌다.   강의 선수과목 및 준비사항입니다. 선수과목  선수과목 또는 관련과목 참고자료  https://www.rcsb.org/ Muhammed, Muhammed Tilahun, and Esin Aki‐Yalcin. "Homology modeling in drug discovery: Overview, current applications,and future perspectives." Chemical biology & drug design 93.1 (2019): 12-20.Ovchinnikov, Sergey, et al. "Protein structure determination using metagenome sequence data." Science 355.6322 (2017): 294- De Vivo M et al. Role of Molecular Dynamics and Related Methods in Drug Discovery. J. Med. Chem. (2016). Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, et al. "Rosetta3 an object-oriented software suite for the simulationand design of macromolecules". Methods Enzymol 487 (2010): 545–574.; Schoeder C T et al. "Modeling Immunity with Rosetta:Methods for Antibody and Antigen Design" Biochemistry 60 (2021): 825−846. C Norn et al, Protein sequence design by explicit energy landscape optimization. PNAS 2021. Mason, Derek M., et al. "Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deeplearning." Nature Biomedical Engineering 5.6 (2021): 600-612.https://wenmr.science.uu.nl/prodigy/https://zhanglab.dcmb.med.umich.edu/SSIPe/ 준비사항  노트북 사용, 사이트 가입, 프로그램 설치 등 준비사항 : FoldIt 웹사이트 가입 (https://fold.it/) : trDesign (https://github.com/gjoni/trDesign) 및 tensorflow 1.13 or 1.14

Students

536

Certificate

신약개발 & 제약산업|

신약개발을 위한 단백질 구조 예측 및 상호작용 예측