2 Course(s)
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 신현길 소속기관 안전성평가연구소 과목명 독성 예측 인공지능 모델 활용 강의시간 6시간 학습목표 1. 무료로 사용 가능한 독성 예측 프로그램 설치 및 활용 방법 익히기 2. python을 이용한 데이터 분석 및 처리 방법 익히기 3. 예측 모델 개발을 위한 python 코드 완성해보기 강의 선수과목 및 준비사항입니다. 선수과목 파이썬 프로그래밍 기초(2-5강), 화학정보학개론, QSAR, RDKit의 기초와 이를 이용한 화학정보학 실습 참고자료 RDKit의 기초와 이를 이용한 화학정보학 실습 [강사 강원대학교 이주용] 1. 컴퓨터를 이용한 신약 개발 방법론 https://www.ibric.org/myboard/list.php?Board=news&Page-2&&PARA3-21) 2. pubchempy (https://pubchempy.readthedocs.io/en/latest/) 3. openbabel 파이썬 모듈 http://openbabel.org/wiki/python) 참고자료 4. MOPAC 홈페이지 (http://openmopac.net/) 5. Chembl 데이터베이스 (https://www.ebi.ac.uk/chembin 6. binding DB (https://www.bindingdb.org/rwd/bind/index.jsp) 7. DILIrank 미국 FDA에서 정리한 데이터 베이스 (classificaion 모델 개발용 데이터) https://www.fda.gov/science-research/liver-toxicity-knowledge-base-ltkb/drug-induced-liver-in jury-rank-cdilirank-dataset) 준비사항 아나콘다 파이썬으로 진행(아나콘다 파이썬이 아닌 경우 pandas, matplotilb, sci-kit learn 모듈 추가 설치 필요) 아나콘다 파이썬에서 추가 설치가 필요한 모듈 (pubchempy, mopac, openbabel, joblib) 아나콘다에서 제공하는 spyder 사용방법 숙지(다른 IDE 호라용해도 문제 X) text editor 프로그램(Atom, Sublime 등) binding DB 데이터 활용을 위한 홈페이지 가입 필요
Students
84
신약개발 & 제약산업|
강의 소개 및 개요입니다. 성명 변형원 소속기관 HK이노엔 과목명 의약품 허가 및 상업용 생산을 위한 기술이전 강의시간 2시간 학습목표 개발된 신약의 품목허가 및 상업용 생산을 위한 기술이전 과정을 이해하고 이를 위한 신약개발 과정에서의 필요사항에 대해 학습한다.
47