Professor
-
Learning Period
11-29-2024 ~ 12-31-2029
Course Introduction
※ AI 신약개발 교재 학습을 위한 강의 모음입니다. (수료증 미발급) 성명 김우연 소속기관 KAIST 화학과 강의 명 (주제) 초보자를 위한 AI 신약개발 “Introduction to AI-based drug discovery” 학습목표 신약개발 및 AI의 기초 개념을 익히고, 이를 바탕으로 초기단계 신약개발에서 최신 AI 기술이 어떻게 활용되는지 이해 분야 ■ AI □ Bio ■ Chem ■ Drug 단계 기초
Students
303
인공지능 & 프로그래밍|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2025
Course Introduction
강의 소개 및 개요입니다. 성명 이세한 소속기관 Hits 과목명 Molecular Representation Learning & Property Prediction 강의시간 5 학습목표 1. 분자 표현을 이해하고 인공지능 학습에 활용 할 수 있다.2. SMILES, fingerprint, pharmacophore, embedding 등의 분자 구조 표현 방법을 학습한다. 강의 선수과목 및 준비사항입니다. 선수과목 - 참고자료 - 준비사항 노트북 사용, discovery studio visualizer & PaDEL 설치
Students
74
화학 & 화학정보학|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2025
Course Introduction
강의 소개 및 개요입니다. 성명 김동섭 소속기관 KAIST 과목명 QSAR 강의시간 5 학습목표 1. QSAR 모델 개발 과정2. 화합물구조의 수식화와 Descriptors3. QSAR를 위한 기계학습법4. Bioactivity prediction5. Proteochemometric modeling
Students
168
화학 & 화학정보학|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2025
Course Introduction
강의 소개 및 개요입니다. 성명 이주용 소속기관 서울대학교 과목명 RDKit의 기초와 이를 이용한 화학정보학 실습 강의시간 10 학습목표 1. RDKit의 기본 기능을 익혀 기본적인 분자 입출력 및 물성 분석을 할 수 있다2. Cheminformatics의 기본 개념을 이해하고 실제로 최신 연구에서 어떻게 사용되고 있는지 살펴본다 강의 선수과목 및 준비사항입니다. 선수과목 파이썬, 주피터 노트북, anaconda 또는 venv 같은 가상환경 생성 프로그램 참고자료 www.rdkit.org, 핸즈온 머신러닝 (한빛 미디어) 준비사항 파이썬, 주피터 노트북, 아나콘다 패키지 관리자가 설치된 PC 필요
Students
237
화학 & 화학정보학|