Professor
-
Learning Period
11-25-2024 ~ 12-31-2029
Course Introduction
성명 빈진혁 소속기관 연세대학교 의과대학 강의 명 (주제) ML/AI 기반 유전체-단백체 멀티오믹스 통합분석 방법론 학습목표 최근 바이오텍 기술의 발전으로 인해 다양한 레벨의 생명정보 데이터들이 생성 및 축적되고 있으며, 이러한 데이터들을 통합 분석하는 방법론들도 인공지능 기술의 발달과 더불어 활발하게 개발되고 있다. 본 강의에서는 유전체/전사체/단백체 데이터들이 통합되는 방법론과 실제 개발된 툴들을 사용해봄으로써 데이터 통합에 대한 이해 및 경험을 쌓는 것을 목표로 한다. 분야 □ AI ■ Bio □ Chem □ Drug 단계 심화
Students
17
인공지능 & 프로그래밍|
생물학 & 생물정보학|
Professor
-
Learning Period
09-12-2024 ~ 12-31-2029
Course Introduction
성명 김선, 이선호 소속기관 서울대학교, 아이겐드럭 강의 명 (주제) Deep learning models for drug response prediction 학습목표 약물 반응성 예측의 주요 원리와 연구 동향을 파악하고, 인공지능 약물 반응성 예측을 위한 딥러닝 방법론 및 주요 데이터베이스를 포괄적으로 학습하여 이를 실제 연구에 적용할 수 있는 기본 능력을 배양한다. 분야 AI 단계 심화
Students
59
인공지능 & 프로그래밍|
Professor
-
Learning Period
09-01-2024 ~ 12-31-2029
Course Introduction
성명 김동섭 소속기관 한국과학기술원 강의 명 (주제) 단백질 구조 예측 및 단백질 설계를 위한 최신 딥러닝 기술 학습목표 - 단백질 구조 예측의 원리의 이해 - template-based 모델링을 통한 단백질 구조 예측법 이해 및 실습 - Alphafold를 이용한 단백질 구조 예측 모델 이해 및 실습 - 단백질 설계의 필요성 및 원리 이해 RFDiffusion을 사용한 단백질 설계의 이해 및 실습 분야 AI, Bio 단계 심화
Students
98
인공지능 & 프로그래밍|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 남호정 소속기관 GIST 과목명 Lecture : AI in Predicting Drug-protein Interaction(sequence-based) 강의시간 2 학습목표 1. 단백질 서열을 사용하여 화합물-단백질 상호작용을 예측하는 다양한 방법론을 학습한다.2. 기계학습, 딥러닝 기반 화합물-단백질 상호작용 예측 모델들에 대해 학습한다. 강의 선수과목 및 준비사항입니다. 선수과목 Deep Learning Advanced (inductive bias, self-supervised learning, semi-supervised learning, Attention, Transformeretc.)Graph Deep Learning(GCN, GAT, GIN, GGNN, MPNN, etc.) 참고자료 doi: 10.1093/bib/bbz157doi: 10.1093/bib/bbab046 준비사항 Colab 접속 가능 환경
Students
95
화학 & 화학정보학|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 김우연 소속기관 KAIST 과목명 AI in Predicting Protein-Ligand Interaction (structure-based) 강의시간 8 학습목표 1.단백질 구조 기반 Protein-Ligand Interaction 에 대한 다양한 AI 예측 모델들을 살펴본다. 2. 예측의 정확도 및 일반화 측면에서 다양한 방법들의 장단점을 이해한다. 강의 선수과목 및 준비사항입니다. 선수과목 al Screening (이주용), Deep learning approach (김동섭), Deep learning frameworks (김학수), Deep learning Basic (김학수 참고자료 981 (2019)), GNN-Torg (JCIM, 59, 4131 (2019)), GNN-Jiang(RSCAdv 20, 20701 (2020)), DeepFusion (JCIM, 61, 1583 (2021)), PoseR 준비사항 x
Students
133
화학 & 화학정보학|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 이일구 소속기관 팜캐드 과목명 Deep Learning based Molecular Generation 강의시간 4 학습목표 1. De novo molecular generation 모델의 핵심 방법을 학습한다.2. pytorch 를 이용하여 RNN, ChemicalVAE 모델을 직접 구현한다. 강의 선수과목 및 준비사항입니다. 선수과목 - 딥러닝 기초 (CNN, RNN, 뉴럴넷 학습 이론)- Pytorch 기초 참고자료 - Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks- Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules 준비사항 - 노트북 사용- python3 및 pytorch 사용- jupyter notebook 사용
Students
54
화학 & 화학정보학|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 이유한 소속기관 카카오브레인 과목명 그래프 트랜스포머를 활용한 분자물성 예측 강의시간 1시간 학습목표 Attention 알고리즘을 이해한다. 그래프 데이터에 attention이 어떻게 쓰이는지 이해하고, 실습으로 이해도를 높인다. 강의 선수과목 및 준비사항입니다. 선수과목 Attention for Deep Learning 참고자료 A Generalization of Transformer Networks to Graphs (https://arxiv.org/abs/2012.09699?amp=1) 준비사항 우분투 환경
Students
47
화학 & 화학정보학|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 허승룡 소속기관 굿인텔리전스 과목명 단백질 서열정렬 알고리즘 구현 실습 강의시간 2시간 학습목표 단백질 서열 정렬에 대한 이해와 pairwise alignment에 대한 프로그램을 구현 할 수 있다. 강의 선수과목 및 준비사항입니다. 선수과목 Python Programming 참고자료 https://gist.github.com/num3ric/1222752 https://3n.wikipedia.org/wiki/Needleman-Wunsch_algorithm https://en.wikipedia.org/wiki/Smith-Waterman_algorithm 준비사항 python3 설치, Linux terminal 환경
Students
23
생물학 & 생물정보학|
화학 & 화학정보학|