Introduction to Geometric Deep Learning 수료증
모집인원999명
학습기간2024-03-01 ~ 2025-12-31
| 
 강의시간  | 
 강의내용  | 
 실습여부  | 
| 
 1  | 
 - Why CNNs, MLPs, RNNs are insufficient for non-Euclidean data - Neural network for graphs & sets - Euclidean transformations, invariance, and equivariance  | 
 
  | 
| 
 2  | 
 - Invariant geometric GNNs (SchNet, DimeNet, and SphereNet) - Simple equivariant geometric GNNs (EGNN and NequIP)  | 
 O  | 
| 
 3  | 
 - Local frame-based geometric GNNs (ClofNet and LEFTNet) - Frame averaging for geometric GNNs (Frame averaging, FAENet)  | 
 O  | 
| 
 4  | 
 - Steerable features, rreducible representations, Wigner-D matrix, spherical harmonics, Clebsch-Gordan tensor product - Steerable geometric GNNs (Tensor field network, SE(3)-Transformer)  | 
 
  | 
| 
 5  | 
 - Steerable geometric GNNs (Equiformer, MACE, eSCN, EquifomerV2)  | 
 O  | 
강의 소개 및 개요입니다.
| 
 성명  | 
 안성수  | 
 소속기관  | 
 POSTECH  | 
| 
 과목명  | 
 Introduction to Geometric Deep Learning  | 
 강의시간  | 
 5  | 
| 
 학습목표  | 
 Geometric deep learning (GDL) aims to develop models capable of handling structured and non-Euclidean data, such as geometric graphs. In this course, we study recent GDL models, with the focus on geometric graph neural networks for molecules.  | 
||
강의 선수과목 및 준비사항입니다.
| 
 선수과목  | 
 graph neural network  | 
| 
 참고자료  | 
 
  | 
| 
 준비사항  | 
 실습에 참여할 경우 실험을, 위한 GPU 세팅  |