Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 남호정 소속기관 GIST 과목명 Lecture : AI in Predicting Drug-protein Interaction(sequence-based) 강의시간 2 학습목표 1. 단백질 서열을 사용하여 화합물-단백질 상호작용을 예측하는 다양한 방법론을 학습한다.2. 기계학습, 딥러닝 기반 화합물-단백질 상호작용 예측 모델들에 대해 학습한다. 강의 선수과목 및 준비사항입니다. 선수과목 Deep Learning Advanced (inductive bias, self-supervised learning, semi-supervised learning, Attention, Transformeretc.)Graph Deep Learning(GCN, GAT, GIN, GGNN, MPNN, etc.) 참고자료 doi: 10.1093/bib/bbz157doi: 10.1093/bib/bbab046 준비사항 Colab 접속 가능 환경
Students
83
약물탐색모델|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 김우연 소속기관 KAIST 과목명 AI in Predicting Protein-Ligand Interaction (structure-based) 강의시간 8 학습목표 1.단백질 구조 기반 Protein-Ligand Interaction 에 대한 다양한 AI 예측 모델들을 살펴본다. 2. 예측의 정확도 및 일반화 측면에서 다양한 방법들의 장단점을 이해한다. 강의 선수과목 및 준비사항입니다. 선수과목 al Screening (이주용), Deep learning approach (김동섭), Deep learning frameworks (김학수), Deep learning Basic (김학수 참고자료 981 (2019)), GNN-Torg (JCIM, 59, 4131 (2019)), GNN-Jiang(RSCAdv 20, 20701 (2020)), DeepFusion (JCIM, 61, 1583 (2021)), PoseR 준비사항 x
Students
104
DTI|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 김이랑 소속기관 온코크로스 과목명 AI 신약개발시 알아야 할 항암제 개요 강의시간 1시간 학습목표 항암제는 AI 신약개발 뿐 아니라 전통신약개발의 경우에도 가장 많이 개발되며, 시장 역시 가장 큰 영역이다. 항암제의 역사, 종류 및 임사에서 항암제 사용 등 항암제 전반에 대해 알아보려 한다.
Students
85
신약개발사례|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 이민호 소속기관 동국대학교 과목명 AI 적용을 위한 약물 fingerprint 및 유사도 계산 강의시간 3 학습목표 1. 약물 파일 포맷의 종류와 개념을 이해하고 이를 데이터베이스로부터 내려받아 활용할 수 있다.2. 약물간의 유사도를 R 프로그래밍 언어를 통해 계산할 수 있다.
Students
47
화학정보프로그래밍|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 김태민 소속기관 가톨릭대학교 과목명 Big data in precision oncology 강의시간 2 학습목표 1. 대표적인 암유전체데이터베이스인 TCGA/ICGC를 통해 big data의 개요 및 구조를 학습한다 강의 선수과목 및 준비사항입니다. 선수과목 Introduction to NGS data analysis, Genomics analysis, Gene expression analysis, RNA-seq/single cell RNA analysis 참고자료 - 준비사항 -
Students
58
바이오데이터수집|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 김태민 소속기관 가톨릭대학교 과목명 Cancer genome analysis 강의시간 5 학습목표 1. 암유전체의 대표적인 변이 중 돌연변이(mutation) 및 염색체변이(copy number alteration)에 대한 정의 및 대표적인 연구기법 등을 학습한다. 강의 선수과목 및 준비사항입니다. 선수과목 NGS data analysis, Genomics analysis, Big data in precision oncology 참고자료 준비사항 R+ 기반 실습과목
Students
48
유전체학|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 김현욱 소속기관 KAIST 과목명 Disease-Target-Drug relationship analysis from multi-dimensional data 강의시간 1시간 학습목표 1. 소프트웨어 사용을 위한 컴퓨팅 환경 학습2. 약물상호작용, 약물부작용 등 다양한 약물반응의 예측을 위한 머신러닝 기반 프로그램 소개 강의 선수과목 및 준비사항입니다. 선수과목 AI 기초 (Python programing, machine learning); Chemoinformatics 분야 기초 (molecular representation 관련) 및 중급 과목 (특히 RDKit 관련) 참고자료 프로그램 관련 논문들 준비사항 -
Students
24
시스템 생물학|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 류성옥 소속기관 Galux 과목명 Graph Neural Networks for Molecular Property Prediction 강의시간 7 학습목표 1. Python 언어의 기본 문법을 익혀 기본적인 코딩을 할 수 있다2. Python 프로그래밍에서 필요한 기초적인 변수, 연산, 문자열, 조건문, 반복문, 함수 등을 학습한다. 강의 선수과목 및 준비사항입니다. 선수과목 참고자료 * GNN github repository, https://github.com/SeongokRyu/Graph-neural-networks* Bayesian learning github repository, https://github.com/SeongokRyu/Bayesian-deep-learning* Reliable GNN github repository, https://github.com/AITRICS/mol_reliable_gnn 준비사항 PyTorch 를 설치 및 활용가능한 노트북, 혹은 Google Colab 활용Dataset은 MoleculeNet 및 Therapeutic Data Commons 의 open benchmark를 활용예정
Students
51
약물최적화모델|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 구희정 소속기관 스탠다임 과목명 Identifying therapeutic targets using biological graph 강의시간 2 학습목표 1. 질병 타겟의 개념 및 타겟 발굴 방법론 전반에 대해 이해한다.2. 기 구축된 타겟 발굴 방법론의 예를 통해 구체적 접근 방법을 이해한다.
Students
23
바이오분석기술|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 임재창 소속기관 HITS 과목명 Molecule design with deep generative models 강의시간 4 학습목표 1. 다양한 딥러닝 기반 분자 생성모델을 리뷰한다.2. 신약개발에 있어 딥러닝 기반 분자 생성모델의 응용연구에 대해서 이해한다. 강의 선수과목 및 준비사항입니다. 선수과목 딥러닝 기초과목 참고자료 - 준비사항 -
Students
35
약물탐색모델|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 이세한 소속기관 Hits 과목명 Molecular Representation Learning & Property Prediction 강의시간 5 학습목표 1. 분자 표현을 이해하고 인공지능 학습에 활용 할 수 있다.2. SMILES, fingerprint, pharmacophore, embedding 등의 분자 구조 표현 방법을 학습한다. 강의 선수과목 및 준비사항입니다. 선수과목 - 참고자료 - 준비사항 노트북 사용, discovery studio visualizer & PaDEL 설치
Students
31
화학정보프로그래밍|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 김태민 소속기관 가톨릭대학교 과목명 Multiomics analysis 강의시간 2 학습목표 1. 대표적인 암유전체데이터베이스인 TCGA data를 통해 multiomics분석의 특성 및 실제 응용기법들을 학습한다. 강의 선수과목 및 준비사항입니다. 선수과목 Gene expression analysis, RNA-seq/single cell RNA analysis, Cancer genome analysis 참고자료 - 준비사항 -
Students
55
바이오분석기술|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 정성원 소속기관 가천대학교 과목명 Omics-based Pathway Analysis 강의시간 3 학습목표 1. Pathway analysis 의 목적 및 그 종류에 따른 특징을 이해한다.2. 널리 사용되는 기초적인 pathway analysis 도구의 사용법을 학습하고 추후 다양한 분석 기법의 활용에 도전한다. 강의 선수과목 및 준비사항입니다. 선수과목 - 참고자료 생물정보학 개론, 유전자발현분석, RNA-seq & Single-cell RNA analysis 준비사항 -
Students
36
바이오분석기술|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 Dr. Yugal Sharma 소속기관 CAS 과목명 Overcoming Scientific Data Challenges in AI 강의시간 1 학습목표 1.Explore the critical role of a data foundation in supporting successful artificial intelligence (AI) initiatives.0 2. Share common challenges organizations face when establishing effective strategies for R&D data. 3. Showcase case studies based on real-life examples from CAS, a leader in scientific information solutions that guides the success of R&D digital initiatives of organizations worldwide.
Students
8
바이오데이터수집|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 김동섭 소속기관 KAIST 과목명 QSAR 강의시간 5 학습목표 1. QSAR 모델 개발 과정2. 화합물구조의 수식화와 Descriptors3. QSAR를 위한 기계학습법4. Bioactivity prediction5. Proteochemometric modeling
Students
66
화학정보프로그래밍|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 이주용 소속기관 서울대학교 과목명 RDKit의 기초와 이를 이용한 화학정보학 실습 강의시간 10 학습목표 1. RDKit의 기본 기능을 익혀 기본적인 분자 입출력 및 물성 분석을 할 수 있다2. Cheminformatics의 기본 개념을 이해하고 실제로 최신 연구에서 어떻게 사용되고 있는지 살펴본다 강의 선수과목 및 준비사항입니다. 선수과목 파이썬, 주피터 노트북, anaconda 또는 venv 같은 가상환경 생성 프로그램 참고자료 www.rdkit.org, 핸즈온 머신러닝 (한빛 미디어) 준비사항 파이썬, 주피터 노트북, 아나콘다 패키지 관리자가 설치된 PC 필요
Students
121
화학정보프로그래밍|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의시간 강의내용 실습여부 1 - Self-Supervised Learning이란? - Language 분야에서의 SSL - Computer vision 분야에서의 SSL X 2 - Molecular Graph란? - Graph Neural Networks - Molecular Graph 분야에서의 SSL X
Students
22
화학정보프로그래밍|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
구조 기반 가상 탐색을 활용한 유효물질발굴과 인공지능을 활용한 유효물질 최적화 강의 과정입니다. 성명 이세한 소속기관 ㈜히츠 과목명 구조 기반 가상 탐색을 활용한 유효물질발굴과 인공지능을 활용한 유효물질 최적화 강의시간 3시간 학습목표 1) 신약 개발 초기 단계에서의 유효물질 발굴을 위한 가상 탐색과2) 발굴한 유효물질의 최적화하기 위한 Hit-to-Lead 기초 이론을 학습한다.
Students
37
약물최적화모델|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 이유한 소속기관 카카오브레인 과목명 그래프 트랜스포머를 활용한 분자물성 예측 강의시간 1시간 학습목표 Attention 알고리즘을 이해한다. 그래프 데이터에 attention이 어떻게 쓰이는지 이해하고, 실습으로 이해도를 높인다. 강의 선수과목 및 준비사항입니다. 선수과목 Attention for Deep Learning 참고자료 A Generalization of Transformer Networks to Graphs (https://arxiv.org/abs/2012.09699?amp=1) 준비사항 우분투 환경
Students
33
약물최적화모델|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의시간 강의내용 실습여부 1 질병 멀티오믹스 데이터에 클러스터링 및 네트워크 분석을 활용한 최신 연구 2 멀티오믹스 데이터 클러스터링 분석의 기초 개념과 적용 사례 3 멀티 오믹스 데이터에 대한 네트워크 분석 적용의 기초 개념과 적용 사례 4 NMF 클러스터링 중심의 멀티오믹스 데이터 클러스터링 분석 실습 O 5 MOFA tool을 활용한 멀티오믹스 데이터 클러스터링 분석 및 해석 실습 O 6 PHONEMES tool을 활용한 멀티오믹스 데이터 네트워크 분석 및 해석 실습 O
Students
23
시스템 생물학|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의소개 및 개요입니다. 성명 최정모 소속기관 부산대학교 화학과 과목명 단백질-리간드 상호작용 계산을 위한 분자동역학 시뮬레이션 방법 강의시간 4시간 학습목표 분자동역학(molecular dynamics; MD) 시뮬레이션 방법의 기초를 익히고, 신약 개발에 널리사용되는 단백질-리간드 상호작용 계산에 응용한다. 강의 선수과목 및 준비사항입니다. 선수과목 기초화학 참고자료 Smit and Frankel, Understanding Molecular Simulation: From Algorithms to Applications 준비사항 해당없음
Students
89
DTI|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의시간 강의내용 실습여부 1 마이크로바이옴 연구의 개요 및 연구사례 없음 2 마이크로바이옴 데이터의 이해: 16S rRNA gene sequencing 과 Shotgun metagenomic sequencing 없음 3 마이크로바이옴 데이터의 질 평가: 시퀀싱부터 원시데이터 이해 없음 4 마이크로바이옴 연구 결과 해석을 위해 기본적으로 알아야할 개념: Diversity 및 Taxonomy 없음 5 마이크로바이옴 연구 결과의 이해 및 활용 없음
Students
63
바이오데이터수집|