~
~

118 Course(s)

Professor

-

Learning Period

03-01-2024 ~ 12-31-2024

Course Introduction

강의시간 강의내용 실습여부 1 천연물 의약품 개발을 위한 예측기술/DB 및 모델링 접근법 소개 -     천연물 개요 및 의약품 개발사례 -     천연물 의약품 개발 연구에 활용 가능한 예측기술 -     천연물 기반 데이터베이스 -     예측모델 개발을 위한 모델링 접근법   2 천연물 데이터 수집 - 천연물 DB 데이터 수집 -     PubChem DB를 활용한 분자구조 데이터 수집 -     PubChem DB를 활용한 Bioassay 데이터 수집 O 3 예측모델 개발을 위한 구조기반 분자표현자 계산 -     분자표현자 기법 소개 -     RDKit을 활용한 분자표현자 계산 -     Mordred를 활용한 분자표현자 계산 -     PaDELPy를 활용한 분자표현자 계산 -     NC-MFP를 활용한 분자표현자 계산 O 4 예측모델 개발을 위한 데이터 전처리 -     데이터 정규화 및 표준화 -     데이터 불균형 문제를 위한 데이터 샘플링 -     데이터 전처리 및 샘플링 기법 구현 O 5 딥러닝 기반 예측모델 개발 및 활용 -     딥러닝 알고리즘 소개 -     DNN 알고리즘 구현 -     DNN 기반 정량/정성 예측모델 개발 및 성능평가 -     DNN 예측모델 활용 O

Students

36

Certificate

약물탐색모델|

천연물 의약품 개발을 위한 딥러닝 예측기술 활용

Professor

-

Learning Period

03-01-2024 ~ 12-31-2024

Course Introduction

강의 소개 및 개요입니다.  성명 김선, 이도훈 소속기관 서울대학교 과목명 인공지능을 활용한 멀티오믹스 기반 바이오마커 발굴 강의시간 2 강의 소개 본 강의는 총 2강으로 구성된다. 제 1강 “멀티오믹스 바이오마커의 주요 원리 및 연구 동향 소개” 에서는 유전체(genome), 전사체(transcriptome), 후성유전체(epigenome), 단백체(proteome) 및 생물학적 네트워크(biological network) 관점의 특성이 바이오마커로 기능할 수 있는 원리를 알아보고, 관련 연구 동향을 소개한다. 제 2강 “멀티오믹스 바이오마커 발굴을 위한 인공지능/기계학습 방법론 및 대규모 데이터베이스 소개” 에서는 전통적 기계학습, 네트워크 기반 알고리즘, 그리고 인공지능에 기반한 바이오마커 발굴 방법론들을 계산적 측면에서 심도있게 다루며, 나아가 해당 방법론의 적용을 위한 대규모 생물학 데이터베이스들을 포괄적으로 소개한다. 강의 목적 멀티오믹스 바이오마커의 주요 원리와 연구 동향을 파악하고, 바이오마커 발굴을 위한 인공지능/기계학습 방법론 및 대규모 생물정보 데이터베이스를 포괄적으로 학습하여 이를 실제 연구에 적용할 수 있는 기본 능력을 배양한다.

Students

69

Starting
인공지능을 활용한 멀티오믹스 기반 바이오마커 발굴
Certificate

바이오분석기술|

인공지능을 활용한 멀티오믹스 기반 바이오마커 발굴

Professor

-

Learning Period

03-01-2024 ~ 12-31-2024

Course Introduction

강의시간 강의내용 실습여부 1 유전변이 데이터 기본 유전변이의 개념과 종류 유전변이 데이터의 수집과 저장 방법 N 2 유전변이 annotation과 약물 유전자 데이터베이스 유전변이 annotation 방법 소개 약물 유전자 데이터베이스의 활용 방법 N 3 암유전체를 이용한 약물유전체 분석 실습 1 암과 관련된 유전체 데이터의 수집과 분석 방법 약물유전체 분석에 활용되는 도구와 기술 Y 4 암유전체를 이용한 약물유전체 분석 실습 2 암유전체 분석을 통한 약물 효능 예측 방법 유전체 변이 데이터를 활용한 개인 맞춤형 약물 치료 방법 Y 5 CNV 유전변이 분석 실습 Copy Number Variation (CNV) 유전변이의 개념과 분석 방법 CNV 데이터를 활용한 약물 유전체 연구 사례 Y 6 Noncoding 유전변이 분석 실습 비코딩 영역의 유전변이 분석 방법과 중요성 Noncoding 유전변이와 약물 반응의 관련성 연구 사례 Y 7 희귀질환 약물유전체 분석 실습 희귀질환과 관련된 유전변이 분석 방법 희귀질환 치료를 위한 약물유전체 연구 사례 Y 8 약물반응성 유전 연관성 대규모 데이터 분석 실습 대규모 유전체 분석을 위한 분석 플랫폼 실습 대규모 유전체 데이터 형태 학습 Y

Students

32

Certificate

유전체학|

바이오데이터수집|

약물 유전체 연구를 위한 유전변이 분석 기초 및 실습

Professor

-

Learning Period

03-01-2024 ~ 12-31-2024

Course Introduction

강의 소개 및 개요입니다. 성명 석차옥 소속기관 서울대학교 과목명 신약개발을위한단백질구조예측및상호작용예측 강의시간 11 학습목표 1. 첨단 단백질 구조 예측 및 상호작용 예측의 원리를 배우고 예측 가능 범위를 파악한다.2. 신약개발에 활용될 수 있는 관련 소프트웨어 및 웹서버 활용법에 대해 익힌다.   강의 선수과목 및 준비사항입니다. 선수과목  선수과목 또는 관련과목 참고자료  https://www.rcsb.org/ Muhammed, Muhammed Tilahun, and Esin Aki‐Yalcin. "Homology modeling in drug discovery: Overview, current applications,and future perspectives." Chemical biology & drug design 93.1 (2019): 12-20.Ovchinnikov, Sergey, et al. "Protein structure determination using metagenome sequence data." Science 355.6322 (2017): 294- De Vivo M et al. Role of Molecular Dynamics and Related Methods in Drug Discovery. J. Med. Chem. (2016). Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, et al. "Rosetta3 an object-oriented software suite for the simulationand design of macromolecules". Methods Enzymol 487 (2010): 545–574.; Schoeder C T et al. "Modeling Immunity with Rosetta:Methods for Antibody and Antigen Design" Biochemistry 60 (2021): 825−846. C Norn et al, Protein sequence design by explicit energy landscape optimization. PNAS 2021. Mason, Derek M., et al. "Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deeplearning." Nature Biomedical Engineering 5.6 (2021): 600-612.https://wenmr.science.uu.nl/prodigy/https://zhanglab.dcmb.med.umich.edu/SSIPe/ 준비사항  노트북 사용, 사이트 가입, 프로그램 설치 등 준비사항 : FoldIt 웹사이트 가입 (https://fold.it/) : trDesign (https://github.com/gjoni/trDesign) 및 tensorflow 1.13 or 1.14

Students

164

Certificate

단백질구조|

신약개발을 위한 단백질 구조 예측 및 상호작용 예측
Load More