Professor
-
Learning Period
04-30-2023 ~ 04-30-2024
Course Introduction
강의 소개 및 개요입니다. 성명 김현욱 소속기관 한국과학기술원(KAIST) 과목명 바이오 네트워크 모델링 강의시간 3시간 학습목표 약물표적 예측을 위한 게놈 수준의 대사모델 구축 및 시뮬레이션에 대한소개 깅의 선수과목 및 준비사항 입니다. 선수과목 생화학 및 프로그래밍에 대한 기본 지식 참고자료 준비사항 노트북 등 컴퓨터
Students
32
시스템 생물학|
Professor
-
Learning Period
04-30-2023 ~ 04-30-2024
Course Introduction
강의 소개 및 개요입니다. 성명 김재훈 소속기관 카카오브레인 과목명 단백질 언어 모델을 활용한 컨텍트 예측 강의시간 2시간 학습목표 Pre-training 개념을 이해한다. 단백질 서열 데이터를 전처리하여 딥러닝 언어 모델에 학습시킬 수 있다. 학습된 결과를 예측모델에 적용할 수 있다. 강의 선수과목 및 준비사항입니다. 선수과목 Python 참고자료 논문: Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences 준비사항 Jupyter notebook 환경
Students
32
단백질구조|
Professor
-
Learning Period
04-30-2023 ~ 04-30-2024
Course Introduction
구조 기반 가상 탐색을 활용한 유효물질발굴과 인공지능을 활용한 유효물질 최적화 강의 과정입니다. 성명 이세한 소속기관 ㈜히츠 과목명 구조 기반 가상 탐색을 활용한 유효물질발굴과 인공지능을 활용한 유효물질 최적화 강의시간 3시간 학습목표 1) 신약 개발 초기 단계에서의 유효물질 발굴을 위한 가상 탐색과2) 발굴한 유효물질의 최적화하기 위한 Hit-to-Lead 기초 이론을 학습한다.
Students
49
약물최적화모델|
Professor
-
Learning Period
04-30-2023 ~ 04-30-2024
Course Introduction
강의 소개 및 개요입니다. 성명 Dr. Yugal Sharma 소속기관 CAS 과목명 Overcoming Scientific Data Challenges in AI 강의시간 1 학습목표 1.Explore the critical role of a data foundation in supporting successful artificial intelligence (AI) initiatives.0 2. Share common challenges organizations face when establishing effective strategies for R&D data. 3. Showcase case studies based on real-life examples from CAS, a leader in scientific information solutions that guides the success of R&D digital initiatives of organizations worldwide.
Students
12
바이오데이터수집|
Professor
-
Learning Period
04-30-2023 ~ 04-30-2024
Course Introduction
강의 소개 및 개요입니다. 성명 정성원 소속기관 가천대학교 과목명 Omics-based Pathway Analysis 강의시간 3 학습목표 1. Pathway analysis 의 목적 및 그 종류에 따른 특징을 이해한다.2. 널리 사용되는 기초적인 pathway analysis 도구의 사용법을 학습하고 추후 다양한 분석 기법의 활용에 도전한다. 강의 선수과목 및 준비사항입니다. 선수과목 - 참고자료 생물정보학 개론, 유전자발현분석, RNA-seq & Single-cell RNA analysis 준비사항 -
Students
67
바이오분석기술|
Professor
-
Learning Period
05-01-2023 ~ 04-27-2024
Course Introduction
강의 소개 및 개요입니다. 성명 김태민 소속기관 가톨릭대학교 과목명 Multiomics analysis 강의시간 2 학습목표 1. 대표적인 암유전체데이터베이스인 TCGA data를 통해 multiomics분석의 특성 및 실제 응용기법들을 학습한다. 강의 선수과목 및 준비사항입니다. 선수과목 Gene expression analysis, RNA-seq/single cell RNA analysis, Cancer genome analysis 참고자료 - 준비사항 -
Students
87
바이오분석기술|
Professor
-
Learning Period
05-01-2023 ~ 04-30-2024
Course Introduction
강의 소개 및 개요입니다. 성명 이세한 소속기관 Hits 과목명 Molecular Representation Learning & Property Prediction 강의시간 5 학습목표 1. 분자 표현을 이해하고 인공지능 학습에 활용 할 수 있다.2. SMILES, fingerprint, pharmacophore, embedding 등의 분자 구조 표현 방법을 학습한다. 강의 선수과목 및 준비사항입니다. 선수과목 - 참고자료 - 준비사항 노트북 사용, discovery studio visualizer & PaDEL 설치
Students
59
화학정보프로그래밍|
Professor
-
Learning Period
05-01-2023 ~ 05-01-2024
Course Introduction
강의 소개 및 개요입니다. 성명 임재창 소속기관 HITS 과목명 Molecule design with deep generative models 강의시간 4 학습목표 1. 다양한 딥러닝 기반 분자 생성모델을 리뷰한다.2. 신약개발에 있어 딥러닝 기반 분자 생성모델의 응용연구에 대해서 이해한다. 강의 선수과목 및 준비사항입니다. 선수과목 딥러닝 기초과목 참고자료 - 준비사항 -
Students
46
약물탐색모델|
Professor
-
Learning Period
05-01-2023 ~ 05-01-2024
Course Introduction
강의 소개 및 개요입니다. 성명 남호정 소속기관 GIST 과목명 Lecture : AI in Predicting Drug-protein Interaction(sequence-based) 강의시간 2 학습목표 1. 단백질 서열을 사용하여 화합물-단백질 상호작용을 예측하는 다양한 방법론을 학습한다.2. 기계학습, 딥러닝 기반 화합물-단백질 상호작용 예측 모델들에 대해 학습한다. 강의 선수과목 및 준비사항입니다. 선수과목 Deep Learning Advanced (inductive bias, self-supervised learning, semi-supervised learning, Attention, Transformeretc.)Graph Deep Learning(GCN, GAT, GIN, GGNN, MPNN, etc.) 참고자료 doi: 10.1093/bib/bbz157doi: 10.1093/bib/bbab046 준비사항 Colab 접속 가능 환경
Students
50
약물탐색모델|
Professor
-
Learning Period
04-30-2023 ~ 04-30-2024
Course Introduction
강의 소개 및 개요입니다. 성명 구희정 소속기관 스탠다임 과목명 Identifying therapeutic targets using biological graph 강의시간 2 학습목표 1. 질병 타겟의 개념 및 타겟 발굴 방법론 전반에 대해 이해한다.2. 기 구축된 타겟 발굴 방법론의 예를 통해 구체적 접근 방법을 이해한다.
Students
39
바이오분석기술|
Professor
-
Learning Period
05-01-2023 ~ 05-01-2024
Course Introduction
강의 소개 및 개요입니다. 성명 류성옥 소속기관 Galux 과목명 Graph Neural Networks for Molecular Property Prediction 강의시간 7 학습목표 1. Python 언어의 기본 문법을 익혀 기본적인 코딩을 할 수 있다2. Python 프로그래밍에서 필요한 기초적인 변수, 연산, 문자열, 조건문, 반복문, 함수 등을 학습한다. 강의 선수과목 및 준비사항입니다. 선수과목 참고자료 * GNN github repository, https://github.com/SeongokRyu/Graph-neural-networks* Bayesian learning github repository, https://github.com/SeongokRyu/Bayesian-deep-learning* Reliable GNN github repository, https://github.com/AITRICS/mol_reliable_gnn 준비사항 PyTorch 를 설치 및 활용가능한 노트북, 혹은 Google Colab 활용Dataset은 MoleculeNet 및 Therapeutic Data Commons 의 open benchmark를 활용예정
Students
80
약물최적화모델|
Professor
-
Learning Period
04-30-2023 ~ 04-30-2024
Course Introduction
강의 소개 및 개요입니다. 성명 김상우 소속기관 연세대학교 과목명 Genomic Analysis (SNV, SV, CNV) 강의시간 5 학습목표 1. NGS 데이터로부터 다양한 유전자 변이를 탐지해 낼 수 있다2. NGS 데이터로부터 유전 변이를 찾아내는 이론을 이해하고, 정확한 결과를 도출할 수 있다 강의 선수과목 및 준비사항입니다. 선수과목 서열분석 (Sequencing Analysis) (기초), Introduction to NGS data analysis (중급) 참고자료 x 준비사항 x
Students
102
유전체학|
Professor
-
Learning Period
05-01-2023 ~ 05-01-2024
Course Introduction
강의 소개 및 개요입니다. 성명 김현욱 소속기관 KAIST 과목명 Disease-Target-Drug relationship analysis from multi-dimensional data 강의시간 1시간 학습목표 1. 소프트웨어 사용을 위한 컴퓨팅 환경 학습2. 약물상호작용, 약물부작용 등 다양한 약물반응의 예측을 위한 머신러닝 기반 프로그램 소개 강의 선수과목 및 준비사항입니다. 선수과목 AI 기초 (Python programing, machine learning); Chemoinformatics 분야 기초 (molecular representation 관련) 및 중급 과목 (특히 RDKit 관련) 참고자료 프로그램 관련 논문들 준비사항 -
Students
29
시스템 생물학|
Professor
-
Learning Period
04-30-2023 ~ 05-01-2024
Course Introduction
강의 소개 및 개요입니다. 성명 이일구 소속기관 팜캐드 과목명 Deep Learning based Molecular Generation 강의시간 4 학습목표 1. De novo molecular generation 모델의 핵심 방법을 학습한다.2. pytorch 를 이용하여 RNN, ChemicalVAE 모델을 직접 구현한다. 강의 선수과목 및 준비사항입니다. 선수과목 - 딥러닝 기초 (CNN, RNN, 뉴럴넷 학습 이론)- Pytorch 기초 참고자료 - Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks- Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules 준비사항 - 노트북 사용- python3 및 pytorch 사용- jupyter notebook 사용
Students
38
약물탐색모델|
Professor
-
Learning Period
05-01-2023 ~ 05-01-2024
Course Introduction
강의 소개 및 개요입니다. 성명 김태민 소속기관 가톨릭대학교 과목명 Cancer genome analysis 강의시간 5 학습목표 1. 암유전체의 대표적인 변이 중 돌연변이(mutation) 및 염색체변이(copy number alteration)에 대한 정의 및 대표적인 연구기법 등을 학습한다. 강의 선수과목 및 준비사항입니다. 선수과목 NGS data analysis, Genomics analysis, Big data in precision oncology 참고자료 준비사항 R+ 기반 실습과목
Students
80
유전체학|
Professor
-
Learning Period
05-01-2023 ~ 04-30-2024
Course Introduction
강의 소개 및 개요입니다. 성명 김태민 소속기관 가톨릭대학교 과목명 Big data in precision oncology 강의시간 2 학습목표 1. 대표적인 암유전체데이터베이스인 TCGA/ICGC를 통해 big data의 개요 및 구조를 학습한다 강의 선수과목 및 준비사항입니다. 선수과목 Introduction to NGS data analysis, Genomics analysis, Gene expression analysis, RNA-seq/single cell RNA analysis 참고자료 - 준비사항 -
Students
75
바이오데이터수집|
Professor
-
Learning Period
05-01-2023 ~ 04-30-2024
Course Introduction
강의 소개 및 개요입니다. 성명 김우연 소속기관 KAIST 과목명 AI in Predicting Protein-Ligand Interaction (structure-based) 강의시간 8 학습목표 1.단백질 구조 기반 Protein-Ligand Interaction 에 대한 다양한 AI 예측 모델들을 살펴본다. 2. 예측의 정확도 및 일반화 측면에서 다양한 방법들의 장단점을 이해한다. 강의 선수과목 및 준비사항입니다. 선수과목 al Screening (이주용), Deep learning approach (김동섭), Deep learning frameworks (김학수), Deep learning Basic (김학수 참고자료 981 (2019)), GNN-Torg (JCIM, 59, 4131 (2019)), GNN-Jiang(RSCAdv 20, 20701 (2020)), DeepFusion (JCIM, 61, 1583 (2021)), PoseR 준비사항 x
Students
117
DTI|
Professor
-
Learning Period
05-01-2023 ~ 04-30-2024
Course Introduction
강의 소개 및 개요입니다. 성명 황상연 소속기관 HITS 과목명 Al 기반 protein-ligand interaction 예측 연구의 최신동향 강의시간 4 학습목표 Al 기반 protein-ligand interaction 예측 연구의 최신 동향 (2022) Protein-ligand interaction (PL) 예측을 위한 딥러닝 모델 연구의 최신 동향을 알아본다. 강의는 논문 리뷰로 진행되며, 2020년도 이후의 주목할 만한 PL 예측 모델 연구들을 살피고 관련하여 결합구조 예측 모델의 일부 또한 살핀다. 강의 선수과목 및 준비사항입니다. 선수과목 (권장) Al in Predicting Drug-Protein Interaction (sequence-based) (권장) Al in Predicting Protein-Ligand Interaction (structure-based) 참고자료 리뷰 대상 논문들 준비사항 없음
Students
69
DTI|
Professor
-
Learning Period
05-01-2023 ~ 05-01-2024
Course Introduction
강의 소개 및 개요입니다. 성명 김이랑 소속기관 온코크로스 과목명 AI 신약개발시 알아야 할 항암제 개요 강의시간 1시간 학습목표 항암제는 AI 신약개발 뿐 아니라 전통신약개발의 경우에도 가장 많이 개발되며, 시장 역시 가장 큰 영역이다. 항암제의 역사, 종류 및 임사에서 항암제 사용 등 항암제 전반에 대해 알아보려 한다.
Students
179
신약개발사례|
Professor
-
Learning Period
05-01-2023 ~ 04-30-2024
Course Introduction
강의 소개 및 개요입니다. 성명 이민호 소속기관 동국대학교 과목명 AI 적용을 위한 약물 fingerprint 및 유사도 계산 강의시간 3 학습목표 1. 약물 파일 포맷의 종류와 개념을 이해하고 이를 데이터베이스로부터 내려받아 활용할 수 있다.2. 약물간의 유사도를 R 프로그래밍 언어를 통해 계산할 수 있다.
Students
65
화학정보프로그래밍|
Professor
-
Learning Period
05-01-2023 ~ 04-30-2024
Course Introduction
강의 소개 및 개요입니다. 성명 이주용 소속기관 강원대학교 과목명 RDKit의 기초와 이를 이용한 화학정보학 실습 강의시간 10 학습목표 1. RDKit의 기본 기능을 익혀 기본적인 분자 입출력 및 물성 분석을 할 수 있다2. Cheminformatics의 기본 개념을 이해하고 실제로 최신 연구에서 어떻게 사용되고 있는지 살펴본다 강의 선수과목 및 준비사항입니다. 선수과목 파이썬, 주피터 노트북, anaconda 또는 venv 같은 가상환경 생성 프로그램 참고자료 www.rdkit.org, 핸즈온 머신러닝 (한빛 미디어) 준비사항 파이썬, 주피터 노트북, 아나콘다 패키지 관리자가 설치된 PC 필요
Students
217
화학정보프로그래밍|
Professor
-
Learning Period
04-30-2023 ~ 04-30-2024
Course Introduction
강의 소개 및 개요입니다. 성명 이유한 소속기관 카카오브레인 과목명 그래프 트랜스포머를 활용한 분자물성 예측 강의시간 1시간 학습목표 Attention 알고리즘을 이해한다. 그래프 데이터에 attention이 어떻게 쓰이는지 이해하고, 실습으로 이해도를 높인다. 강의 선수과목 및 준비사항입니다. 선수과목 Attention for Deep Learning 참고자료 A Generalization of Transformer Networks to Graphs (https://arxiv.org/abs/2012.09699?amp=1) 준비사항 우분투 환경
Students
50
약물최적화모델|
Professor
-
Learning Period
04-30-2023 ~ 04-30-2024
Course Introduction
강의 소개 및 개요입니다. 성명 김상욱 소속기관 포항공과대학교 생명과학과 과목명 기계학습 및 네트워크 구조를 활용한 정밀의학 강의시간 2시간 학습목표 현재 정밀의료를 위한 바이오의약품 개발의 어려움과 이를 극복하기 위한 네트워크 정밀의학 방법론을 이해를 높임 강의 선수과목 및 준비사항입니다. 선수과목 일반생명, 생화학 참고자료 Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients. Nat Commun. 2020 Oct 30;11(1):5485. doi: 10.1038/s41467-020-19313-8. 준비사항 -
Students
19
바이오분석기술|
Professor
-
Learning Period
04-30-2023 ~ 04-30-2024
Course Introduction
강의 소개 및 개요입니다. 성명 김현욱 소속기관 한국과학기술원(KAIST) 과목명 바이오 데이터베이스의 활용 강의시간 1시간 학습목표 바이오 네트워크 및 대사모델 구축을 위한 생물정보학 관련 데이터베이스에대한 소개 깅의 선수과목 및 준비사항 입니다. 선수과목 생화학 및 프로그래밍에 대한 기본 지식 참고자료 준비사항 노트북 등 컴퓨터
Students
60
바이오데이터수집|
Professor
-
Learning Period
04-30-2023 ~ 04-30-2024
Course Introduction
강의 소개 및 개요입니다. 성명 정인석 소속기관 스탠다임 과목명 병렬 처리를 활용한 대용량 계산 방법 강의시간 2시간 학습목표 컴퓨터에서 병렬 계산이 처리되는 방식을 이해하고 다양한 방식으로 병렬 계산을 수행할 수 있다 강의 선수과목 및 준비사항입니다. 선수과목 Python programming 참고자료 https://docs.python.org/3/library/multiprocessing.html https://mpi4py.readthedocs.io/en/stable/ https://github.com/zeehio/parmap 준비사항 Anaconda python3 설치, linux-like terminal 환경 구성
Students
34
파이썬프로그래밍|
Professor
-
Learning Period
04-30-2023 ~ 04-30-2024
Course Introduction
강의소개 및 개요입니다. 성명 최정모 소속기관 부산대학교 화학과 과목명 단백질-리간드 상호작용 계산을 위한 분자동역학 시뮬레이션 방법 강의시간 4시간 학습목표 분자동역학(molecular dynamics; MD) 시뮬레이션 방법의 기초를 익히고, 신약 개발에 널리사용되는 단백질-리간드 상호작용 계산에 응용한다. 강의 선수과목 및 준비사항입니다. 선수과목 기초화학 참고자료 Smit and Frankel, Understanding Molecular Simulation: From Algorithms to Applications 준비사항 해당없음
Students
69
DTI|
Professor
-
Learning Period
04-30-2023 ~ 04-30-2024
Course Introduction
성명 김상수 소속기관 숭실대학교 과목명 신약 타겟 발굴을 위한 exome 시퀀싱의 활용 강의시간 4 학습목표 대규모 인구 집단의 유전체 서열 분석을 통해서 신약 타겟을 발굴한 사례를 리뷰하고, 이 에 관련된 생명정보학 기술에 대한 이론적 소개와 함께, 공개된 데이터 및 분석 소프트웨어 를 활용한 실습을 통하여, 유전체학 기반 신약 개발의 기초를 닦음.
Students
30
유전체학|